Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor

被引:65
作者
Mei, Danhua [1 ]
Tu, Xin [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
non-thermal plasmas; carbon dioxide conversion; plasma treatment of catalysts; plasma chemistry; supported catalysts; GLIDING ARC PLASMA; CARBON-DIOXIDE; LOW-TEMPERATURES; DECOMPOSITION; CONVERSION; REDUCTION; CATALYSTS; GENERATION; EFFICIENCY; NI;
D O I
10.1002/cphc.201700752
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct conversion of CO2 into CO and O-2 is performed in a packed-bed dielectric barrier discharge (DBD) non-thermal plasma reactor at low temperatures and atmospheric pressure. The maximum CO2 conversion of 22.6% is achieved when BaTiO3 pellets are fully packed into the discharge gap. The introduction of g-Al2O3 or 10 wt% Ni/g-Al2O3 catalyst into the BaTiO3 packed DBD reactor increases both CO2 conversion and energy efficiency of the plasma process. Packing g-Al2O3 or 10 wt% Ni/g-Al2O3 upstream of the BaTiO3 bed shows higher CO2 conversion and energy efficiency compared with that of mid-or downstream packing modes because the reverse reaction of CO2 conversion-the recombination of CO and O to form CO2-is more likely to occur in mid-and downstream modes. Compared with the g-Al2O3 support, the coupling of the DBD with the Ni catalyst shows a higher CO2 conversion, which can be attributed to the presence of Ni active species on the catalyst surface. The argon plasma treatment of the reacted Ni catalyst provides extra evidence to confirm the role of Ni active species in the conversion of CO2.
引用
收藏
页码:3253 / 3259
页数:7
相关论文
共 61 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]   In-Situ Chemical Trapping of Oxygen in the Splitting of Carbon Dioxide by Plasma [J].
Aerts, Robby ;
Snoeckx, Ramses ;
Bogaerts, Annemie .
PLASMA PROCESSES AND POLYMERS, 2014, 11 (10) :985-992
[3]   Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges [J].
Aerts, Robby ;
Martens, Tom ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23257-23273
[4]  
[Anonymous], 2014, Standards for TB Care in India, P1
[5]  
[Anonymous], 2012, EUROBSERVER BIOGAS
[6]   Synthesis of Micro- and Nanomaterials in CO2 and CO Dielectric Barrier Discharges [J].
Belov, Igor ;
Vanneste, Jens ;
Aghaee, Morteza ;
Paulussen, Sabine ;
Bogaerts, Annemie .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (03)
[7]   Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency [J].
Belov, Igor ;
Paulussen, Sabine ;
Bogaerts, Annemie .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (01)
[8]   CO and byproduct formation during CO2 reduction in dielectric barrier discharges [J].
Brehmer, F. ;
Welzel, S. ;
van de Sanden, M. C. M. ;
Engeln, R. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (12)
[9]   Factors influencing the decomposition of CO2 in AC fan-type plasma reactors:: Frequency, waveform, and concentration effects [J].
Brock, SL ;
Shimojo, T ;
Marquez, M ;
Marun, C ;
Suib, SL ;
Matsumoto, H ;
Hayashi, Y .
JOURNAL OF CATALYSIS, 1999, 184 (01) :123-133
[10]   Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor [J].
Butterworth, T. ;
Elder, R. ;
Allen, R. .
CHEMICAL ENGINEERING JOURNAL, 2016, 293 :55-67