Exact solutions to three-dimensional Schrodinger equation with an exponentially position-dependent mass

被引:0
作者
Cai, CY [1 ]
Ren, ZZ
Ju, GX
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210008, Peoples R China
[2] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China
[3] Jinggangshan Univ, Dept Phys, Jian 343009, Peoples R China
关键词
Schrodinger equation; exact solutions; coordinate transformation; effective mass;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For an exponentially position-dependent mass, we obtain the exact solutions of the three-dimensional Schrodinger equation by using coordinate transformation method for the reference problems with Coulomb potential, Kratzer potential, and spherically square potential well of infinite depth, respectively. The explicit expressions for the energy eigenvalues and the corresponding eigenfunctions of the three systems are presented.
引用
收藏
页码:1019 / 1022
页数:4
相关论文
共 50 条
[41]   Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass [J].
Jafarov, E. I. ;
van der Jeugt, J. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07)
[42]   Semiclassical Method to Schr(?)dinger Equation with Position-Dependent Effective Mass [J].
CHEN Gang XUAN PeiCai and CHEN ZiDong Department of Physics Shaoxing College of Arts and Sciences Shaoxing China Institute of Theoretical Physics Shanxi University Taiyuan China Department of Mathematics Shaoxing College of Arts and Sciences Shaoxing China .
Communications in Theoretical Physics, 2006, 46 (07) :39-42
[43]   Bound states of the Dirac equation with position-dependent mass for the Eckart potential [J].
Bahar, M. K. ;
Yasuk, F. .
CHINESE PHYSICS B, 2013, 22 (01)
[44]   Exact Solutions of D-Dimensional Schrodinger Equation for an Energy-Dependent Potential by NU Method [J].
Hassanabadi, H. ;
Zarrinkamar, S. ;
Rajabi, A. A. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) :541-544
[45]   Exact solutions to D-dimensional Schrodinger equation with a pseudoharmonic oscillator [J].
Wang, LY ;
Gu, XY ;
Ma, ZQ ;
Dong, SH .
FOUNDATIONS OF PHYSICS LETTERS, 2002, 15 (06) :569-576
[46]   Exact Solutions to the Nonlinear Schrodinger Equation [J].
Aktosun, Tuncay ;
Busse, Theresa ;
Demontis, Francesco ;
van der Mee, Cornelis .
TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 :1-+
[47]   Quasi-exact l-states of Klein-Gordon equation with position-dependent effective mass for exponential scalar and vector fields [J].
Kisoglu, H. F. .
INDIAN JOURNAL OF PHYSICS, 2025, 99 (07) :2573-2579
[48]   Exact solutions to the Schrodinger equation for the anharmonic oscillator potential [J].
Lu, FL ;
Chen, CY .
ACTA PHYSICA SINICA, 2004, 53 (03) :688-692
[49]   Analytical investigation of a Dirac particle dynamics in a hyperbolic magnetic field with position-dependent mass: exact solutions and ladder operators [J].
Kisoglu, H. F. ;
Ala, Volkan .
PHYSICA SCRIPTA, 2025, 100 (02)
[50]   Analytical solutions of position-dependent mass Klein-Gordon equation for unequal scalar and vector Yukawa potentials [J].
Wang, Z. ;
Long, Z-W ;
Long, C-Y ;
Wang, L-Z .
INDIAN JOURNAL OF PHYSICS, 2015, 89 (10) :1059-1064