Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain

被引:122
|
作者
Li, Jinpeng [1 ]
Xu, Xuexin [1 ]
Lin, Gang [1 ]
Wang, Yunqi [1 ]
Liu, Yang [1 ]
Zhang, Meng [1 ]
Zhou, Jinyao [1 ]
Wang, Zhimin [1 ,2 ]
Zhang, Yinghua [1 ,2 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, 2 Yuanmingyuan West Rd, Beijing 100193, Peoples R China
[2] Engn Technol Res Ctr Agr Low Plain Areas, Shijiazhuang, Hebei, Peoples R China
关键词
Water use efficiency; Nitrogen use efficiency; Micro-sprinkling; Root length density; WATER-USE EFFICIENCY; NITROGEN APPLICATION RATE; SUPPLEMENTAL IRRIGATION; DRIP IRRIGATION; DRY-MATTER; MAIZE; SOIL; FIELD; CULTIVARS; GROWTH;
D O I
10.1016/j.scitotenv.2018.06.157
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water use efficiency (WUE) and nitrogen fertilizer use efficiency (NUE) of winter wheat are urgently needed to further improve in the North China Plain (NCP). In this study, a 3-year field experiment was conducted during the 2014-2017 growing seasons to clarify the effect of traditional flood irrigation (TI), surface drip irrigation (DI), and micro-sprinkling irrigation (MSI) on grain yield, WUE, and NUE of winter wheat. Across the 3 years, grain yield of DI and MSI improved by 9.79% and 14.1%, WUE of DI and MSI increased by 12.3% and 17.7%, and NUE of DI and MSI increased by 9.77% and 14.0%, respectively compared with those of TI. Wheat subjected to the micro-irrigation treatments (DI and MSI) had higher chlorophyll content in flag leaves 10 days post-anthesis; this postponed senescence of the flag leaves, which increased dry matter accumulation post-anthesis, and increased 1000-grain weight and grain yield. The micro-irrigation treatments reduced pre-anthesis water consumption but increased post-anthesis water consumption and ensured the water supply in the top soil layer at the critical stage, thus increasing WUE. Root length density (RLD) of TI in the 0-80-cm soil layer was significantly higher than that of micro-irrigation, whereas micro-irrigation had higher RLD than TI below the 80-cm soil layer, which promoted the absorption and utilization of water and nitrogen in deep soil. The micro-irrigation treatments increased total nitrogen accumulation of the plants, reduced soil nitrate nitrogen (NO3--N) content at maturity, ensured the nitrogen supply in the top soil layer, thus increasing NUE. Overall, micro-irrigation with water and fertilizer as an integrated pattern significantly improved grain yield, WUE, and NUE of winter wheat in the NCP by co-locating the root, water, and N-fertilizer distribution and reducing NO3--N accumulation in deep soil. The best treatment was micro-sprinkling irrigation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 50 条
  • [1] Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain
    Li, Jinpeng
    Zhang, Zhen
    Liu, Yang
    Yao, Chunsheng
    Song, Wenyue
    Xu, Xuexin
    Zhang, Meng
    Zhou, Xiaonan
    Gao, Yanmei
    Wang, Zhimin
    Sun, Zhencai
    Zhang, Yinghua
    AGRICULTURAL WATER MANAGEMENT, 2019, 224
  • [2] Optimizing the spatial distribution of roots by supplemental irrigation to improve grain yield and water use efficiency of wheat in the North China Plain
    Feng, Suwei
    Ding, Weihua
    Shi, Chenchen
    Zhu, Xiaoling
    Hu, Tiezhu
    Ru, Zhengang
    AGRICULTURAL WATER MANAGEMENT, 2023, 275
  • [3] Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain
    Li, Jinpeng
    Wang, Zhimin
    Yao, Chunsheng
    Zhang, Zhen
    Liu, Yang
    Zhang, Yinghua
    CROP JOURNAL, 2021, 9 (06): : 1397 - 1407
  • [4] Optimal Nitrogen Supply Improves Grain Yield and Resource Use Efficiency in Winter Wheat under Supplemental Irrigation
    Wang, Xin
    Shi, Yu
    Yu, Zhenwen
    Zheng, Chengyan
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 24 (05) : 1135 - 1141
  • [5] Yield and water use response of winter wheat to winter irrigation in the North China Plain
    Shao, L. W.
    Zhang, X. Y.
    Sun, H. Y.
    Chen, S. Y.
    Wang, Y. M.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2011, 66 (02) : 104 - 113
  • [6] Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat
    Jia, Dianyong
    Dai, Xinglong
    Xie, Yuli
    He, Mingrong
    AGRICULTURAL WATER MANAGEMENT, 2021, 244
  • [7] Response of winter wheat grain yield and water use efficiency to deficit irrigation in the North China Plain
    Han, Huifang
    Ren, Yujie
    Gao, Chao
    Yan, Zhenxing
    Li, Quanqi
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2017, 29 (12): : 971 - 977
  • [8] Radiation use efficiency of winter wheat in different planting patterns and irrigation frequencies in the North China Plain
    Gao, Chao
    Ren, Yujie
    Li, Quanqi
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2019, 65 (07) : 1010 - 1021
  • [9] Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain
    Xu, Xuexin
    Zhang, Meng
    Li, Jinpeng
    Liu, Zuqiang
    Zhao, Zhigan
    Zhang, Yinghua
    Zhou, Shunli
    Wang, Zhimin
    FIELD CROPS RESEARCH, 2018, 221 : 219 - 227
  • [10] Effects of micro-sprinkling with different irrigation levels on winter wheat grain yield and greenhouse gas emissions in the North China Plain
    Zhen, Zhang
    Zhenwen, Yu
    Yu, Shi
    Yongli, Zhang
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 143