Cramer-type moderate deviations for intermediate trimmed means

被引:0
作者
Gribkova, Nadezhda [1 ]
机构
[1] St Petersburg State Univ, Dept Probabil Theory & Math Stat, St Petersburg, Russia
关键词
Asymptotic normality; Intermediate trimmed means; Large deviations; Moderate deviations; Slightly trimmed sums; 62G30; 60F10; 60F05; 62E20; 62G35; ASYMPTOTIC-DISTRIBUTION; LINEAR-COMBINATIONS; BOOTSTRAP; THEOREM;
D O I
10.1080/03610926.2017.1285930
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we establish Cramer-type moderate deviation results for (intermediate) trimmed means T-n = n(- 1)Sigma(n - m)(ni = kn) + 1X(i: n), where X-i: n's are the order statistics corresponding to the first n observations in asequence X-1, X-2, ... of independent identically distributed random variables with F. We consider two cases of intermediate and heavy trimming. In the former case, when max((n), (n)) 0 ((n) = k(n)/n, (n) = m(n)/n) and min(k(n), m(n)) as n , we obtain our results under anatural moment assumption and amild condition on the rate at which (n) and (n) tend to zero. In the latter case, we do not impose any moment conditions on F, instead, we require some smoothness of F- 1 in anopen set containing the limit points of the trimming sequences alpha(n), 1-beta(n).
引用
收藏
页码:11918 / 11932
页数:15
相关论文
共 23 条
[1]  
Alekeviiene A., 1991, LITH MATH J, V33, P145, DOI DOI 10.1007/BF00970812
[2]  
Bentkus V., 1990, LITH MATH J, V30, P215, DOI DOI 10.1007/BF00970804
[3]   Robust fitting of claim severity distributions and the method of trimmed moments [J].
Brazauskas, Vytaras ;
Jones, Bruce L. ;
Zitikis, Ricardas .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (06) :2028-2043
[4]   A CRAMER TYPE LARGE DEVIATION THEOREM FOR TRIMMED LINEAR-COMBINATIONS OF ORDER-STATISTICS [J].
CALLAERT, H ;
VANDEMAELE, M ;
VERAVERBEKE, N .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1982, 11 (23) :2689-2698
[5]   THE ASYMPTOTIC-DISTRIBUTION OF TRIMMED SUMS [J].
CSORGO, S ;
HAEUSLER, E ;
MASON, DM .
ANNALS OF PROBABILITY, 1988, 16 (02) :672-699
[6]  
DEHEUVELS P, 1993, ANN I H POINCARE-PR, V29, P83
[7]   Generalization of a probability limit theorem of Cramer [J].
Feller, W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :361-372
[8]   DELTA METHOD IN LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR ESTIMATORS [J].
Gao, Fuqing ;
Zhao, Xingqiu .
ANNALS OF STATISTICS, 2011, 39 (02) :1211-1240
[9]  
Gribkova N., 1995, EXPLORING STOCHASTIC, P129
[10]   On the Edgeworth expansion and the M out of N bootstrap accuracy for a Studentized trimmed mean [J].
Gribkova N.V. ;
Helmers R. .
Mathematical Methods of Statistics, 2007, 16 (2) :142-176