Model-based Reinforcement Learning and the Eluder Dimension

被引:0
|
作者
Osband, Ian [1 ]
Van Roy, Benjamin [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014) | 2014年 / 27卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of learning to optimize an unknown Markov decision process (MDP). We show that, if the MDP can be parameterized within some known function class, we can obtain regret bounds that scale with the dimensionality, rather than cardinality, of the system. We characterize this dependence explicitly as (O) over tilde(root d(K)d(E)T) where T is time elapsed, d(K) is the Kolmogorov dimension and d(E) is the eluder dimension. These represent the first unified regret bounds for model-based reinforcement learning and provide state of the art guarantees in several important settings. More-over, we present a simple and computationally efficient algorithm posterior sampling for reinforcement learning (PSRL) that satisfies these bounds.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Model-based reinforcement learning with dimension reduction
    Tangkaratt, Voot
    Morimoto, Jun
    Sugiyama, Masashi
    NEURAL NETWORKS, 2016, 84 : 1 - 16
  • [2] Uniform-PAC Guarantees for Model-Based RL with Bounded Eluder Dimension
    Wu, Yue
    He, Jiafan
    Gu, Quanquan
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2304 - 2313
  • [3] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [4] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [5] Nonparametric model-based reinforcement learning
    Atkeson, CG
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [6] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [7] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [8] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [9] Learning to Paint With Model-based Deep Reinforcement Learning
    Huang, Zhewei
    Heng, Wen
    Zhou, Shuchang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8708 - 8717
  • [10] Incremental model-based reinforcement learning with model constraint
    Yang, Zhiyou
    Fu, Mingsheng
    Qu, Hong
    Li, Fan
    Shi, Shuqing
    Hu, Wang
    NEURAL NETWORKS, 2025, 185