ALGEBRAIC LIMIT CYCLES FOR QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS

被引:4
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 06期
关键词
Algebraic limit cycle; quadratic polynomial differential system; quadratic polynomial vector field; CURVES; INTEGRALS; EXISTENCE;
D O I
10.3934/dcdsb.2018070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a quadratic polynomial differential system having three pairs of diametrally opposite equilibrium points at infinity that are positively rationally independent, has at most one algebraic limit cycle. Our result provides a partial positive answer to the following conjecture: Quadratic polynomial differential systems have at most one algebraic limit cycle.
引用
收藏
页码:2475 / 2485
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 1900, 2 INT C MATH PAR, DOI DOI 10.1090/S0002-9904-1902-00923-3
[2]   Necessary conditions for the existence of invariant algebraic curves for planar polynomial systems [J].
Chavarriga, J ;
Giacomini, H ;
Grau, M .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (02) :99-126
[3]   Algebraic limit cycles of degree 4 for quadratic systems [J].
Chavarriga, J ;
Llibre, J ;
Sorolla, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) :206-244
[4]   Uniqueness of algebraic limit cycles for quadratic systems [J].
Chavarriga, J ;
Giacomini, H ;
Llibre, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (01) :85-99
[5]   Invariant algebraic curves and rational first integrals for planar polynomial vector fields [J].
Chavarriga, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) :1-16
[6]  
Chen L. S., 1977, ACTA MATH SINICA, V20, P11
[7]   Invariant algebraic curves of large degree for quadratic system [J].
Christopher, C ;
Llibre, J ;
Swirszcz, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) :450-461
[8]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229
[9]  
Coll B., 1988, Qualitative Theory of Differential Equations, VVolume 53, P111
[10]  
Coll B., 1988, PUBL MAT, V32, P199