Statistical image watermark decoder using NSM-HMT in NSCT-FGPCET magnitude domain

被引:5
|
作者
Wang, Xiangyang [1 ]
Peng, Fanchen [1 ]
Niu, Panpan [1 ]
Yang, Hongying [1 ]
机构
[1] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
Lwatermarking; Statistical model; NSCT domain FGPCET magnitude; NSM-HMT; GEM-CMM parameter estimation; DETECTOR; TRANSFORM; ALGORITHM; SCHEME; MODEL;
D O I
10.1016/j.jisa.2022.103312
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The image watermarking technology is an effective technology for protecting image copyright at present. Image watermarking techniques have a constraint relationship between imperceptibility, robustness, and watermark capacity. Balancing imperceptibility, robustness, and watermark capacity becomes a tricky problem. This paper proposes a statistical image watermarking scheme using nonsubsampled Contourlet transform (NSCT) domain fast generic polar complex exponential transform (FGPCET) magnitudes and nonsymmetric mixtures (NSM) based hidden Markov tree (HMT). In the embedding part, to enhance robustness and imperceptibility, we insert the watermark signal into the robust local NSCT domain FGPCET magnitudes through the multiplicative method. In the decoding part, a statistical image watermarking decoder is designed using the NSM-HMT model and maximum likelihood criterion. Here, marginal characteristics and strong correlations of local NSCT domain FGPCET magnitudes are described by NSM-HMT. In addition, the generalized expectation-maximization (GEM)-clusterized method of moments (CMM) approach is used for accurate parameters. Extensive Monte Carlo ex-periments validate the better performance of the proposed image watermarking method compared to other well-known methods.
引用
收藏
页数:20
相关论文
共 10 条
  • [1] Blind Image Watermark Decoder in UDTCWT Domain Using Weibull Mixtures-Based Vector HMT
    Niu, Panpan
    Shen, Xin
    Wei, Tongtong
    Yang, Hongying
    Wang, Xiangyang
    IEEE ACCESS, 2020, 8 : 46624 - 46641
  • [2] Contourlet domain locally optimum image watermark decoder using Cauchy mixtures based vector HMT model
    Wang, Xiang-yang
    Wen, Tao-tao
    Wang, Li
    Niu, Pan-pan
    Yang, Hong-ying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 88
  • [3] Blind image watermark decoder in NSST-FPCET domain using Weibull Mixtures-HMT
    Wang, Xiangyang
    Shen, Yixuan
    Wang, Tingting
    Niu, Panpan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [4] Statistical image watermark decoder based on local frequency-domain Exponent-Fourier moments modeling
    Wang, Xiang-yang
    Shen, Xin
    Tian, Jia-lin
    Niu, Pan-pan
    Yang, Hong-ying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (18) : 27717 - 27755
  • [5] Statistical image watermark decoder using high-order difference coefficients and bounded generalized Gaussian mixtures-based HMT
    Wang, Xiang-Yang
    Shen, Xin
    Tian, Jia-Lin
    Niu, Pan-Pan
    Yang, Hong-Ying
    SIGNAL PROCESSING, 2022, 192
  • [6] A new watermark decoder in DNST domain using singular values and gaussian-cauchy mixture-based vector HMT
    Wang, Xiang-yang
    Wen, Tao-tao
    Shen, Xin
    Niu, Pan-pan
    Yang, Hong-ying
    INFORMATION SCIENCES, 2020, 535 : 81 - 106
  • [7] Locally optimum image watermark decoder by modeling NSCT domain difference coefficients with vector based Cauchy distribution
    Wang Xiang-yang
    Zhang Si-yu
    Wang Li
    Yang Hong-ying
    Niu Pan-pan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 309 - 329
  • [8] Image watermarking using DNST-PHFMs magnitude domain vector AGGM-HMT
    Wang, Xiangyang
    Ma, Runtong
    Shen, Yixuan
    Niu, Panpan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 91
  • [9] Statistical image watermark decoder by modeling local RDWT difference domain singular values with bivariate weighted Weibull distribution
    Wang, Xiangyang
    Yao, Yao
    Yu, Yang
    Niu, Panpan
    Yang, Hongying
    APPLIED INTELLIGENCE, 2023, 53 (01) : 96 - 120
  • [10] NSST Domain Statistical Watermark Decoder Using Local Low-Order PZMs Magnitudes and Student's-t Mixture Model
    Peng, FanChen
    Xiao, Yao
    Zhang, LiRong
    Li, Yang
    Gang, JiaLin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (10) : 6661 - 6688