The Hilbert-space operator formalism within dynamical reduction models

被引:11
作者
Bassi, Angelo
Ghirardi, GianCarlo
Salvetti, Davide G. M.
机构
[1] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
[2] LMU, Inst Math, D-80333 Munich, Germany
[3] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[4] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
D O I
10.1088/1751-8113/40/45/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unlike standard quantum mechanics, dynamical reduction models assign no particular a priori status to `measurement processes', `apparata' and `observables', nor self-adjoint operators and positive-operator-valued measures enter the postulates defining these models. In this paper, we show why and how the Hilbert-space operator formalism, which standard quantum mechanics postulates, can be derived from the fundamental evolution equation of dynamical reduction models. Far from having any special ontological meaning, we show that within the dynamical reduction context the operator formalism is just a compact and convenient way to express the statistical properties of the outcomes of experiments.
引用
收藏
页码:13755 / 13772
页数:18
相关论文
共 12 条