Maximizing algebraic connectivity for certain families of graphs

被引:18
作者
Kolokolnikov, T. [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Algebraic connectivity; Optimal networks; Trees; Cubic graphs; EXPANDER GRAPHS; EIGENVALUE; CONSENSUS; SPECTRUM;
D O I
10.1016/j.laa.2014.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the bounds on algebraic connectivity of graphs subject to constraints on the number of edges, vertices, and topology. We show that the algebraic connectivity for any tree on n vertices and with maximum degree d is bounded above by 2(d - 2)1/n + O(ln n/n(2)). We then investigate upper bounds on algebraic connectivity for cubic graphs. We show that algebraic connectivity of a cubic graph of girth g is bounded above by 3 - 2(3/2) cos(pi/[g/2]), which is an improvement over the bound found by Nilli [34]. Finally, we propose several conjectures and open questions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 140
页数:19
相关论文
共 40 条
  • [1] EIGENVALUES AND EXPANDERS
    ALON, N
    [J]. COMBINATORICA, 1986, 6 (02) : 83 - 96
  • [2] Alon Noga, 1992, The Probabilistic Method
  • [3] [Anonymous], 2011, RIMS Kokyuroku
  • [4] [Anonymous], ELECT J COMBIN
  • [5] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [6] BELHAIZA S, 2005, GRAPH THEORY COMBINA, P1, DOI DOI 10.1007/0-387-25592-3_1
  • [7] Biggs Norman., 1998, Electon. J. Combin, V5, P1
  • [8] Boyd S, 2004, SIAM REV, V46, P667, DOI [10.1137/S0036144503423264, 10.1137/s0036144503423264]
  • [9] Broder A., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P286, DOI 10.1109/SFCS.1987.45
  • [10] EXPERIMENTAL DESIGN FOR BIOLOGICAL SYSTEMS
    Chung, Matthias
    Haber, Eldad
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) : 471 - 489