Attenuation of Human Bias in Artificial Intelligence: An Exploratory Approach

被引:6
作者
Ahmed, Saad [1 ]
Athyaab, Saif Ali [1 ]
Muqtadeer, Shaik Abdul [1 ]
机构
[1] Chaitanya Bharathi Inst Technol, Dept Comp Sci & Engn, Hyderabad, India
来源
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021) | 2021年
关键词
Artificial Intelligence; Machine Learning; Bias; Fairness; Debiasing;
D O I
10.1109/ICICT50816.2021.9358507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the world embraces Industry 4.0 with open-hands, Artificial Intelligence has taken centre-stage. AI systems are driving decision making and impacting stakeholders' viewpoints through data. While these systems pamper companies with these new-found efficiendes, they are quite vulnerable to the 'garbage in, garbage out' syndrome. In the case of such intelligent systems, the type of 'garbage' is biased data. One cannot hope of eliminating bias in machine learning and Artificial Intelligence without addressing the pressing concerns of bias in humans. Although it is deemed as an uphill task by intellectuals in the academia and industry, gradual yet significant steps have been made. This paper intends to measure and mitigate bias in IS Employment Demographics. Different algorithms will be applied and a comparison shall be carried out. The social implications of bias in Artificial Intelligence will also be discussed extensively.
引用
收藏
页码:557 / 563
页数:7
相关论文
共 11 条
[1]   AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias [J].
Bellamy, R. K. E. ;
Dey, K. ;
Hind, M. ;
Hoffman, S. C. ;
Houde, S. ;
Kannan, K. ;
Lohia, P. ;
Martino, J. ;
Mehta, S. ;
Mojsilovie, A. ;
Nagar, S. ;
Ramamurthy, K. Natesan ;
Richards, J. ;
Saha, D. ;
Sattigeri, P. ;
Singh, M. ;
Varshney, K. R. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (4-5)
[2]  
Calmon FP, 2017, ADV NEUR IN, V30
[3]   Certifying and Removing Disparate Impact [J].
Feldman, Michael ;
Friedler, Sorelle A. ;
Moeller, John ;
Scheidegger, Carlos ;
Venkatasubramanian, Suresh .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :259-268
[4]   A vulnerability analysis: Theorising the impact of artificial intelligence decision-making processes on individuals, society and human diversity from a social justice perspective [J].
Krupiy, Tetyana .
COMPUTER LAW & SECURITY REVIEW, 2020, 38
[5]  
Manoharan D. S., 2020, PATIENT DIET RECOMME, V2, P121
[6]  
Mehrabi N., 2019, CORR
[7]  
Nelson Gregory S, 2019, N C Med J, V80, P220, DOI 10.18043/ncm.80.4.220
[8]   Bias in data-driven artificial intelligence systems-An introductory survey [J].
Ntoutsi, Eirini ;
Fafalios, Pavlos ;
Gadiraju, Ujwal ;
Iosifidis, Vasileios ;
Nejdl, Wolfgang ;
Vidal, Maria-Esther ;
Ruggieri, Salvatore ;
Turini, Franco ;
Papadopoulos, Symeon ;
Krasanakis, Emmanouil ;
Kompatsiaris, Ioannis ;
Kinder-Kurlanda, Katharina ;
Wagner, Claudia ;
Karimi, Fariba ;
Fernandez, Miriam ;
Alani, Harith ;
Berendt, Bettina ;
Kruegel, Tina ;
Heinze, Christian ;
Broelemann, Klaus ;
Kasneci, Gjergji ;
Tiropanis, Thanassis ;
Staab, Steffen .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (03)
[9]   Managing Bias in AI [J].
Roselli, Drew ;
Matthews, Jeanna ;
Talagala, Nisha .
COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), 2019, :539-544
[10]  
Vijayakumar Dr, 2019, J ARTIF INTELL, V01, P19