A Kantorovich-type convergence analysis of the Newton-Josephy method for solving variational inequalities

被引:0
作者
Argyros, Ioannis K. [2 ]
Hilout, Said [1 ]
机构
[1] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
关键词
Variational inequalities; Newton-Josephy method; Newton-Kantorovich hypothesis; Majorizing sequence; Frechet-derivative; GENERALIZED EQUATIONS; THEOREM;
D O I
10.1007/s11075-010-9364-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Kantorovich-type semilocal convergence analysis of the Newton-Josephy method for solving a certain class of variational inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291-1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer error bounds on the distances involved, and an at least as precise information on the location of the solution.
引用
收藏
页码:447 / 466
页数:20
相关论文
共 24 条
[1]  
Alefeld G., 1983, Introduction to Interval Computation
[2]  
[Anonymous], 1973, N HOLLAND MATH STUDI
[3]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[4]  
Argyros I.K., 2009, SURVEYS MATH APPL, V4, P119
[5]  
Argyros I. K., 2009, EFFICIENT METHODS SO
[6]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[7]   On the Newton-Kantorovich hypothesis for solving equations [J].
Argyros, LK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (02) :315-332
[8]  
CHEN B, 1995, MATH PROGRAM, V69, P273
[9]  
EAVES BC, 1978, LOCALLY QUADRATICALL
[10]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220