SOME RESULTS ON THE LARGEST AND LEAST EIGENVALUES OF GRAPHS

被引:0
|
作者
Lin, Huiqiu [1 ]
Liu, Ruifang [2 ]
Shu, Jinlong [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
关键词
Spectral radius; Diameter; Matching number; Least eigenvalue; Quasi-tree graph; SPECTRAL-RADIUS; NUMBER; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a simple graph with vertex set V(G) = {v(1), v(2), . . . , v(n)} and edge set E(G). In this paper, first some sharp upper and lower bounds on the largest and least eigenvalues of graphs are given when vertices are removed. Some conjectures in [M. Aouchiche. Comparaison Automatisee dInvariants en Theorie des Graphes. Ph.D. Thesis, Ecole Polytechnique de Montreal, February 2006.] and [M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal graphs, 20. Automated comparison of graph invariants. MATCH Commun. Math. Comput. Chem., 58:365384, 2007.] involving the spectral radius, diameter and matching number are also proved. Furthermore, the extremal graph which attains the minimum least eigenvalue among all quasi-tree graphs is characterized.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 50 条
  • [41] Some Statistical Results on Randic Energy of Graphs
    Altindag, Ilkay
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 331 - 339
  • [42] Ordering trees with n vertices and matching number q by their largest Laplacian eigenvalues
    Guo, Shu-Guang
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4608 - 4615
  • [43] Some stability results for spectral extremal problems of graphs with bounded matching number ☆
    Jiang, Shixia
    Yuan, Xiying
    Zhai, Yanni
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 513 - 524
  • [44] Some results on the distance and distance signless Laplacian spectral radius of graphs and digraphs
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 218 - 225
  • [45] MINIMUM NUMBER OF DISTINCT EIGENVALUES OF GRAPHS
    Ahmadi, Bahman
    Alinaghipour, Fatemeh
    Cavers, Michael S.
    Fallat, Shaun
    Meagher, Karen
    Nasserasr, Shahla
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 673 - 691
  • [46] The distance eigenvalues of the complements of unicyclic graphs
    Qin, Rui
    Li, Dan
    Chen, Yuanyuan
    Meng, Jixiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 598 (49-67) : 49 - 67
  • [47] Laplacian ABC-Eigenvalues of Graphs
    Yang, Ning
    Deng, Bo
    Li, Xueliang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 85 (01) : 195 - 206
  • [48] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [49] Matchings in regular graphs from eigenvalues
    Cioaba, Sebastian M.
    Gregory, David A.
    Haemers, Willem H.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 287 - 297
  • [50] On arithmetic-geometric eigenvalues of graphs
    Rather, Bilal A.
    Aouchiche, Mustapha
    Imran, Muhammad
    Pirzada, Shariefuddin
    MAIN GROUP METAL CHEMISTRY, 2022, 45 (01) : 111 - 123