SOME RESULTS ON THE LARGEST AND LEAST EIGENVALUES OF GRAPHS

被引:0
|
作者
Lin, Huiqiu [1 ]
Liu, Ruifang [2 ]
Shu, Jinlong [3 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] E China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
关键词
Spectral radius; Diameter; Matching number; Least eigenvalue; Quasi-tree graph; SPECTRAL-RADIUS; NUMBER; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a simple graph with vertex set V(G) = {v(1), v(2), . . . , v(n)} and edge set E(G). In this paper, first some sharp upper and lower bounds on the largest and least eigenvalues of graphs are given when vertices are removed. Some conjectures in [M. Aouchiche. Comparaison Automatisee dInvariants en Theorie des Graphes. Ph.D. Thesis, Ecole Polytechnique de Montreal, February 2006.] and [M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal graphs, 20. Automated comparison of graph invariants. MATCH Commun. Math. Comput. Chem., 58:365384, 2007.] involving the spectral radius, diameter and matching number are also proved. Furthermore, the extremal graph which attains the minimum least eigenvalue among all quasi-tree graphs is characterized.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 50 条
  • [31] On the sum of two largest eigenvalues of a symmetric matrix
    Javad, Ebrahimi B.
    Mohar, Bojan
    Nikiforov, Vladimir
    Ahmady, Azhvan Sheikh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (11-12) : 2781 - 2787
  • [32] The least eigenvalues of the signless Laplacian of non-bipartite graphs with pendant vertices
    Fan, Yi-Zheng
    Wang, Yi
    Guo, Huan
    DISCRETE MATHEMATICS, 2013, 313 (07) : 903 - 909
  • [33] Adjacency eigenvalues of graphs without short odd cycles
    Li, Shuchao
    Sun, Wanting
    Yu, Yuantian
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [34] Extreme eigenvalues of nonregular graphs
    Cioaba, Sebastian M.
    Gregory, David A.
    Nikiforov, Vladimir
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 483 - 486
  • [35] A note on eigenvalues of signed graphs
    Sun, Gaoxing
    Liu, Feng
    Lan, Kaiyang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 652 : 125 - 131
  • [36] Walks and eigenvalues of signed graphs
    Stanic, Zoran
    SPECIAL MATRICES, 2023, 11 (01):
  • [37] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11) : 2307 - 2324
  • [38] Some results on the majorization theorem of connected graphs
    Mu Huo Liu
    Bo Lian Liu
    Acta Mathematica Sinica, English Series, 2012, 28 : 371 - 378
  • [39] Some results on the majorization theorem of connected graphs
    Liu, Mu Huo
    Liu, Bo Lian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (02) : 371 - 378
  • [40] Some results on the spectral radii of bicyclic graphs
    Yuan, Xi-Ying
    Chen, Yan
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2835 - 2840