Engineering novel tunable optical high-Q nanoparticle array filters for a wide range of wavelengths

被引:17
|
作者
Utyushev, A. D. [1 ,2 ,3 ]
Isaev, I. L. [3 ]
Gerasimov, V. S. [1 ,3 ,4 ]
Ershov, A. E. [1 ,2 ,3 ,4 ]
Zakomirnyi, V., I [1 ,4 ,5 ,6 ]
Rasskazov, I. L. [7 ]
Polyutov, S. P. [1 ,6 ]
Agren, H. [4 ,5 ]
Karpov, S., V [1 ,2 ,4 ,6 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[2] Siberian State Univ Sci & Technol, Krasnoyarsk 660014, Russia
[3] Fed Res Ctr KSC SB RAS, Inst Computat Modeling, Krasnoyarsk 660036, Russia
[4] FMBA Russia, Fed Siberian Res Clin Ctr, Krasnoyarsk 660037, Russia
[5] Royal Inst Technol, Div Theoret Chem & Biol, SE-10044 Stockholm, Sweden
[6] Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[7] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
基金
俄罗斯科学基金会;
关键词
COLLECTIVE LATTICE RESONANCES; PLASMON RESONANCE; NARROW; SCATTERING; MODES; PARTICLE; FIELDS; GOLD; BAND;
D O I
10.1364/OE.28.001426
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interaction of non-monochromatic radiation with arrays comprising plasmonic and dielectric nanoparticles has been studied using the finite-difference time-domain electrodynamics method. It is shown that LiNbO3, TiO2, GaAs, Si, and Ge all-dielectric nanoparticle arrays can provide a complete selective reflection of an incident plane wave within a narrow spectral line of collective lattice resonance with a Q-factor of 10(3) or larger at various spectral ranges, while plasmonic refractory TiN and chemically stable Au nanoparticle arrays provide high-Q resonances with moderate reflectivity. Arrays with fixed dimensional parameters make it possible to fine-tune the position of a selected resonant spectral line by tilting the array relative to the direction of the incident radiation. These effects provide grounds for engineering novel selective tunable optical high-Q filters in a wide range of wavelengths, from visible to middle-IR. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1426 / 1438
页数:13
相关论文
共 50 条
  • [21] Novel high-Q optical microwave processor using hybrid delay-line filters
    Univ of Sydney, Sydney
    IEEE Trans. Microwave Theory Tech., 7 II (1304-1308):
  • [22] PULSE INJECTION FOR REAL-TIME MONITORING OF TUNABLE HIGH-Q FILTERS
    Abu Khater, M.
    Peroulis, D.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2014, 56 (03) : 761 - 764
  • [23] High-Q Tunable Waveguide Filters Using Ohmic RF MEMS Switches
    Pelliccia, Luca
    Cacciamani, Fabrizio
    Farinelli, Paola
    Sorrentino, Roberto
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3381 - 3390
  • [24] Tunable optical filters with wide wavelength range based on porous multilayers
    Mescheder, Ulrich
    Khazi, Isman
    Kovacs, Andras
    Ivanov, Alexey
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [25] Tunable optical filters with wide wavelength range based on porous multilayers
    Ulrich Mescheder
    Isman Khazi
    Andras Kovacs
    Alexey Ivanov
    Nanoscale Research Letters, 9
  • [26] Practical Limitations of High-Q Multi-ring Optical Filters
    Liu, Fenfei
    Hossein-Zadeh, Mani
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 873 - +
  • [27] On designing linear tunable high-Q OTA-C filters with low sensitivity
    De Lima, JA
    Alcaide, FM
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 21 - 24
  • [28] Analysis and design of a high-Q differential active inductor with wide tuning range
    Li, C.
    Gong, F.
    Wang, P.
    IET CIRCUITS DEVICES & SYSTEMS, 2010, 4 (06) : 486 - 495
  • [29] Nonlinear properties of high-Q optical microresonators in normal dispersion range
    Shitikov, Artem E.
    Lobanov, Valery E.
    Pavlov, Nikolay G.
    Voloshin, Andrey S.
    Bilenko, Igor A.
    Gorodetsky, Michael L.
    XI INTERNATIONAL SYMPOSIUM ON PHOTON ECHO AND COHERENT SPECTROSCOPY (PECS-2017), 2017, 161
  • [30] Measuring the Charge of a Single Dielectric Nanoparticle Using a High-Q Optical Microresonator
    Chen, You-Ling
    Jin, Wei-Liang
    Xiao, Yun-Feng
    Zhang, Xuming
    PHYSICAL REVIEW APPLIED, 2016, 6 (04):