Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries

被引:34
作者
Gan, Yongping [1 ]
Zhu, Lingyan [1 ]
Qin, Huaipeng [1 ]
Xia, Yang [1 ]
Xiao, Han [1 ]
Xu, Lusheng [2 ]
Ruan, Luoyuan [1 ]
Liang, Chu [1 ]
Tao, Xinyong [1 ]
Huang, Hui [1 ]
Zhang, Wenkui [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rutile TiO2; Graphene; Hydrothermal; Hybrid nanostructure; Li-ion battery; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; ANATASE TIO2; LI; TITANIA; ELECTROACTIVITY; NANOSTRUCTURES; NANOCOMPOSITE; FABRICATION; NANOSHEETS;
D O I
10.1016/j.ssi.2014.11.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, rutile TiO2 nanoneedle/graphene composites with a unique one dimensional/two dimensional (1D/2D) hybrid nanostructure were prepared via a facile hydrothermal route. These obtained rutile TiO2 nanoneedles with the length of similar to 500 nm have a homogeneous dispersion on the interlayers of graphene nanosheets. As the anodic materials, the as-prepared sample exhibited the superior Li storage capability with good cycling stability (over 94% capacity retention) and remarkable rate performance (149 mA h g(-1) at a 5 Crate). The improved electrochemical performance can be attributed to the unique microstructure. On the one hand, 1D rutile TiO2 nanoneedles shorten the length of Li+ transport paths to achieve a higher Li+ diffusion rate. On the other hand, 2D graphene sheets provide good electronic contacts to reduce the contact resistance, as well as keep the structural integrity of the electrode materials. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 46 条
[21]   PERFORMANCE OF TITANIUM DIOXIDE-BASED CATHODES IN A LITHIUM POLYMER ELECTROLYTE CELL [J].
MACKLIN, WJ ;
NEAT, RJ .
SOLID STATE IONICS, 1992, 53 (pt 1) :694-700
[22]   Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries [J].
Mai, Y. J. ;
Tu, J. P. ;
Xia, X. H. ;
Gu, C. D. ;
Wang, X. L. .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6388-6393
[23]   Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries [J].
Marinaro, M. ;
Pfanzelt, M. ;
Kubiak, P. ;
Marassi, R. ;
Wohlfahrt-Mehrens, M. .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9825-9829
[24]   Crystallite Size Dependence of Lithium Intercalation in Nanocrystalline Rutile [J].
Milne, Nicholas A. ;
Skyllas-Kazacos, Maria ;
Luca, Vittorio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (30) :12983-12995
[25]   A mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material [J].
Moriguchi, I ;
Hidaka, R ;
Yamada, H ;
Kudo, T ;
Murakami, H ;
Nakashima, N .
ADVANCED MATERIALS, 2006, 18 (01) :69-73
[26]   Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes [J].
Ortiz, Gregorio F. ;
Hanzu, Ilie ;
Djenizian, Thierry ;
Lavela, Pedro ;
Tirado, Jose L. ;
Knauth, Philippe .
CHEMISTRY OF MATERIALS, 2009, 21 (01) :63-67
[27]   TiO2 rutile-An alternative anode material for safe lithium-ion batteries [J].
Pfanzelt, M. ;
Kubiak, P. ;
Fleischhammer, M. ;
Wohlfahrt-Mehrens, M. .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6815-6821
[28]   Nanosized TiO2 Rutile with High Capacity and Excellent Rate Capability [J].
Pfanzelt, M. ;
Kubiak, P. ;
Wohlfahrt-Mehrens, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (07) :A91-A94
[29]   High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres [J].
Qiao, Hui ;
Wang, Yawen ;
Xiao, Lifen ;
Zhang, Lizhi .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1280-1283
[30]   Morphological and crystallite size impact on electrochemical performance of electrospun rutile and rutile/multiwall carbon nanotube nanofibers for lithium ion batteries [J].
Qing, Rui ;
Sigmund, Wolfgang .
CERAMICS INTERNATIONAL, 2014, 40 (04) :5665-5669