From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams

被引:108
作者
Beluns, Sergejs [1 ]
Gaidukovs, Sergejs [1 ]
Platnieks, Oskars [1 ]
Gaidukova, Gerda [2 ]
Mierina, Inese [3 ]
Grase, Liga [4 ]
Starkova, Olesja [5 ]
Brazdausks, Prans [6 ]
Thakur, Vijay Kumar [1 ,7 ]
机构
[1] Riga Tech Univ, Fac Mat Sci & Appl Chem, Inst Polymer Mat, P Valdena 3-7, LV-1048 Riga, Latvia
[2] Riga Tech Univ, Fac Mat Sci & Appl Chem, Inst Appl Chem, P Valdena 3-7, LV-1048 Riga, Latvia
[3] Riga Tech Univ, Fac Mat Sci & Appl Chem, Inst Organ Chem Technol Mat, P Valdena 3-7, LV-1048 Riga, Latvia
[4] Riga Tech Univ, Fac Mat Sci & Appl Chem, Inst Silicate Mat, P Valdena 3-7, LV-1048 Riga, Latvia
[5] Univ Latvia, Inst Mech Mat, Jelgavas 3, LV-1004 Riga, Latvia
[6] Latvian State Inst Wood Chem, 27 Dzerbenes Str, LV-1006 Riga, Latvia
[7] Scotlands Rural Coll SRUC, Biorefining & Adv Mat Res Ctr, Kings Bldg,West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland
关键词
Cryogels; nanocellulose network; cellulose nanofibrils; ultralight porous structure; thermal conductivity modelling; EFFECTIVE THERMAL-CONDUCTIVITY; HIGH-PRESSURE HOMOGENIZATION; CELLULOSE AEROGELS; AGRICULTURAL WASTE; NANOFIBERS; STABILITY; NANOCRYSTALLINE; FIBERS; ACID;
D O I
10.1016/j.indcrop.2021.113780
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Transition to the circular economy requires the implementation of recycling and reuse routes for waste products. This research addresses one of the leading emerging areas, i.e., the development of sustainable materials and natural waste processing, namely wood and hemp byproducts. The cellulosic nanomaterials derived from these under-utilized waste residues and byproducts also serve as promising natural precursors for advanced applications, e.g., biomedical, pollution filtering, and thermal insulation. The wood and hemp fibrils were prepared by microfluidic processing of 0.2 - 1.0 wt% cellulose water suspensions. After freeze-drying, the resulting foam materials were characterized with a bulk density of 2 - 36 mg/cc. Key characteristics of the obtained hemp and wood nanocellulose (NC) foams were examined by the mechanical response, porosity, BET analysis, thermal conductivity, thermal degradation, chemical composition, and morphology. Hemp NC foams showed higher performance characteristics that coincide with almost twice the length of the fibrils, 1.5 times higher cellulose content, and a more homogeneous mesh-like structure compared to wood NC foams. In addition, the thermal performance of obtained NC foams was in the range of 34 - 44 mW/m.K, which makes their application comparable to commonly used insulation materials.
引用
收藏
页数:12
相关论文
共 75 条
[1]   A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications [J].
Abdul Khalil, H. P. S. ;
Adnan, A. S. ;
Yahya, Esam Bashir ;
Olaiya, N. G. ;
Safrida, Safrida ;
Hossain, Md. Sohrab ;
Balakrishnan, Venugopal ;
Gopakumar, Deepu A. ;
Abdullah, C. K. ;
Oyekanmi, A. A. ;
Pasquini, Daniel .
POLYMERS, 2020, 12 (08)
[2]   Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study [J].
Alila, Sabrine ;
Besbes, Iskander ;
Vilar, Manuel Rei ;
Mutje, Pere ;
Boufi, Sami .
INDUSTRIAL CROPS AND PRODUCTS, 2013, 41 :250-259
[3]   Bio-based rigid high-density polyurethane foams as a structural thermal break material [J].
Andersons, J. ;
Kirpluks, M. ;
Cabulis, P. ;
Kalnins, K. ;
Cabulis, U. .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
[4]   Thermally Insulating Nanocellulose-Based Materials [J].
Apostolopoulou-Kalkavoura, Varvara ;
Munier, Pierre ;
Bergstrom, Lennart .
ADVANCED MATERIALS, 2021, 33 (28)
[5]   Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources [J].
Ates, Burhan ;
Koytepe, Suleyman ;
Ulu, Ahmet ;
Gurses, Canbolat ;
Thakur, Vijay Kumar .
CHEMICAL REVIEWS, 2020, 120 (17) :9304-9362
[6]   Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers [J].
Atiqah, M. S. Nurul ;
Gopakumar, Deepu A. ;
Owolabi, F. A. T. ;
Pottathara, Yasir Beeran ;
Rizal, Samsul ;
Aprilia, N. A. Sri ;
Hermawan, D. ;
Paridah, M. T. ;
Thomas, Sabu ;
Khalil, Abdul H. P. S. .
POLYMERS, 2019, 11 (11)
[7]   Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics [J].
Berglund, Linn ;
Noel, Maxime ;
Aitomaki, Yvonne ;
Oman, Tommy ;
Oksman, Kristiina .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 92 :84-92
[8]  
Bismarck A, 2005, NATURAL FIBERS, BIOPOLYMERS, AND BIOCOMPOSITES, P37
[9]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[10]   Biorefinery Approach for Aerogels [J].
Budtova, Tatiana ;
Aguilera, Daniel Antonio ;
Beluns, Sergejs ;
Berglund, Linn ;
Chartier, Coraline ;
Espinosa, Eduardo ;
Gaidukovs, Sergejs ;
Klimek-Kopyra, Agnieszka ;
Kmita, Angelika ;
Lachowicz, Dorota ;
Liebner, Falk ;
Platnieks, Oskars ;
Rodriguez, Alejandro ;
Tinoco Navarro, Lizeth Katherine ;
Zou, Fangxin ;
Buwalda, Sytze J. .
POLYMERS, 2020, 12 (12) :1-63