The discontinuous enrichment method for multiscale analysis

被引:64
作者
Farhat, C
Harari, I
Hetmaniuk, U
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Ctr Aerosp Struct, Boulder, CO 80309 USA
[3] Tel Aviv Univ, Dept Solid Mech Mat & Syst, IL-69978 Ramat Aviv, Israel
关键词
D O I
10.1016/S0045-7825(03)00344-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computation naturally separates scales of a problem according to the mesh size. A variety of improved numerical methods are described by multiscale considerations, differing in the treatment of the unresolved, fine scales. The discontinuous enrichment method provides a unique multiscale approach to computation by employing fine scales that contain solutions of the homogeneous partial differential equation in a discontinuous framework. The method thus 3mbines relative ease of implementation with improved numerical performance. These properties are demonstrated for oth multiscale wave and transport problems, pointing to the potential of considerable savings in computational resources. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:3195 / 3209
页数:15
相关论文
共 41 条
[1]   A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution [J].
Babuska, I ;
Ihlenburg, F ;
Paik, ET ;
Sauter, SA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :325-359
[2]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[3]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[4]  
2-N
[5]  
Babuska IM, 2000, SIAM REV, V42, P451
[6]   Nearly H1-optimal finite element methods [J].
Barbone, PE ;
Harari, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (43-44) :5679-5690
[7]  
Bouillard P, 1999, INT J NUMER METH ENG, V45, P783, DOI 10.1002/(SICI)1097-0207(19990710)45:7<783::AID-NME605>3.0.CO
[8]  
2-M
[9]   A RELATIONSHIP BETWEEN STABILIZED FINITE-ELEMENT METHODS AND THE GALERKIN METHOD WITH BUBBLE FUNCTIONS [J].
BREZZI, F ;
BRISTEAU, MO ;
FRANCA, LP ;
MALLET, M ;
ROGE, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 96 (01) :117-129
[10]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129