Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients

被引:17
作者
Mottola, Margherita [1 ,2 ]
Ursprung, Stephan [3 ,4 ]
Rundo, Leonardo [3 ,4 ]
Sanchez, Lorena Escudero [3 ,4 ]
Klatte, Tobias [5 ,6 ]
Mendichovszky, Iosif [3 ]
Stewart, Grant D. [4 ,5 ]
Sala, Evis [3 ,4 ]
Bevilacqua, Alessandro [2 ,7 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn DEI, I-40136 Bologna, Italy
[2] Univ Bologna, Adv Res Ctr Elect Syst ARCES, I-40125 Bologna, Italy
[3] Univ Cambridge, Dept Radiol, Cambridge CB2 0QQ, England
[4] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge CB2 0RE, England
[5] Univ Cambridge, Dept Surg, Cambridge CB2 0QQ, England
[6] Royal Bournemouth Hosp, Dept Urol, Bournemouth BH7 7DW, Dorset, England
[7] Univ Bologna, Dept Comp Sci & Engn DISI, I-40136 Bologna, Italy
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
FEATURE ROBUSTNESS; TEXTURE ANALYSIS; PARAMETERS;
D O I
10.1038/s41598-021-90985-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computed Tomography (CT) is widely used in oncology for morphological evaluation and diagnosis, commonly through visual assessments, often exploiting semi-automatic tools as well. Well-established automatic methods for quantitative imaging offer the opportunity to enrich the radiologist interpretation with a large number of radiomic features, which need to be highly reproducible to be used reliably in clinical practice. This study investigates feature reproducibility against noise, varying resolutions and segmentations (achieved by perturbing the regions of interest), in a CT dataset with heterogeneous voxel size of 98 renal cell carcinomas (RCCs) and 93 contralateral normal kidneys (CK). In particular, first order (FO) and second order texture features based on both 2D and 3D grey level co-occurrence matrices (GLCMs) were considered. Moreover, this study carries out a comparative analysis of three of the most commonly used interpolation methods, which need to be selected before any resampling procedure. Results showed that the Lanczos interpolation is the most effective at preserving original information in resampling, where the median slice resolution coupled with the native slice spacing allows the best reproducibility, with 94.6% and 87.7% of features, in RCC and CK, respectively. GLCMs show their maximum reproducibility when used at short distances.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   A statistical approach for MR and CT images comparison [J].
Andria, Gregorio ;
Attivissimo, Filippo ;
Lanzolla, Anna Maria Lucia .
MEASUREMENT, 2013, 46 (01) :57-65
[3]   Exploratory radiomic features from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer [J].
Baiocco, Serena ;
Sah, Bert-Ram ;
Mallia, Andrew ;
Kelly-Morland, Christian ;
Neji, Radhouene ;
Stirling, J. James ;
Jeljeli, Sami ;
Bevilacqua, Alessandro ;
Cook, Gary J. R. ;
Goh, Vicky .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (07) :1478-1484
[4]   Test-Retest Reproducibility Analysis of Lung CT Image Features [J].
Balagurunathan, Yoganand ;
Kumar, Virendra ;
Gu, Yuhua ;
Kim, Jongphil ;
Wang, Hua ;
Liu, Ying ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Korn, Rene ;
Zhao, Binsheng ;
Schwartz, Lawrence H. ;
Basu, Satrajit ;
Eschrich, Steven ;
Gatenby, Robert A. ;
Gillies, Robert J. .
JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) :805-823
[5]   CT-based radiomic model predicts high grade of clear cell renal cell carcinoma [J].
Ding, Jiule ;
Xing, Zhaoyu ;
Jiang, Zhenxing ;
Chen, Jie ;
Pan, Liang ;
Qiu, Jianguo ;
Xing, Wei .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 103 :51-56
[6]   Computer-aided diagnosis in medical imaging: Historical review, current status and future potential [J].
Doi, Kunio .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :198-211
[7]  
Fotina I, 2012, STRAHLENTHER ONKOL, V188, P160, DOI 10.1007/s00066-011-0027-6
[8]   Variation in algorithm implementation across radiomics software [J].
Foy, Joseph J. ;
Robinson, Kayla R. ;
Li, Hui ;
Giger, Maryellen L. ;
Al-Hallaq, Hania ;
Armato, Samuel G., III .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[9]   Radiomics feature reproducibility under inter-rater variability in segmentations of CT images [J].
Haarburger, Christoph ;
Mueller-Franzes, Gustav ;
Weninger, Leon ;
Kuhl, Christiane ;
Truhn, Daniel ;
Merhof, Dorit .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621