Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst

被引:779
作者
Chen, Feng-Yang [1 ]
Wu, Zhen-Yu [1 ]
Gupta, Srishti [2 ]
Rivera, Daniel J. [2 ]
Lambeets, Sten, V [3 ]
Pecaut, Stephanie [1 ]
Kim, Jung Yoon Timothy [1 ]
Zhu, Peng [1 ]
Finfrock, Y. Zou [4 ]
Meira, Debora Motta [5 ]
King, Graham [5 ]
Gao, Guanhui [6 ]
Xu, Wenqian [7 ]
Cullen, David A. [8 ]
Zhou, Hua [7 ]
Han, Yimo [9 ]
Perea, Daniel E. [10 ]
Muhich, Christopher L. [2 ,11 ]
Wang, Haotian [1 ,9 ,12 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Chem Engn Program, Tempe, AZ 85281 USA
[3] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[4] Argonne Natl Lab, Xray Sci Div, Struct Biol Ctr, Lemont, IL USA
[5] Canadian Light Source, Saskatoon, SK, Canada
[6] Rice Univ, Electron Microscope Ctr, Dept Mat Sci & NanoEngn, Houston, TX USA
[7] Argonne Natl Lab, Adv Photon Source, Lemont, IL USA
[8] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[9] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[10] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Environm Mol Sci Lab, Richland, WA 99352 USA
[11] Arizona State Univ, Mat Sci & Engn Program, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
[12] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 加拿大健康研究院; 加拿大创新基金会;
关键词
TOTAL-ENERGY CALCULATIONS; WASTE-WATER; REDUCTION; NITROGEN; DENITRIFICATION; PERSPECTIVES; SELECTIVITY; CATALYSTS; REMOVAL; EXAFS;
D O I
10.1038/s41565-022-01121-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitrate, a common pollutant in wastewater and groundwater, has been efficiently converted into valuable ammonia products via an electrochemical method using Ru-dispersed Cu nanowire as the catalyst. Electrochemically converting nitrate ions, a widely distributed nitrogen source in industrial wastewater and polluted groundwater, into ammonia represents a sustainable route for both wastewater treatment and ammonia generation. However, it is currently hindered by low catalytic activities, especially under low nitrate concentrations. Here we report a high-performance Ru-dispersed Cu nanowire catalyst that delivers an industrial-relevant nitrate reduction current of 1 A cm(-2) while maintaining a high NH3 Faradaic efficiency of 93%. More importantly, this high nitrate-reduction catalytic activity enables over a 99% nitrate conversion into ammonia, from an industrial wastewater level of 2,000 ppm to a drinkable water level <50 ppm, while still maintaining an over 90% Faradaic efficiency. Coupling the nitrate reduction effluent stream with an air stripping process, we successfully obtained high purity solid NH4Cl and liquid NH3 solution products, which suggests a practical approach to convert wastewater nitrate into valuable ammonia products. Density functional theory calculations reveal that the highly dispersed Ru atoms provide active nitrate reduction sites and the surrounding Cu sites can suppress the main side reaction, the hydrogen evolution reaction.
引用
收藏
页码:759 / +
页数:12
相关论文
共 66 条
[1]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[2]   Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode [J].
Chauhan, Rohit ;
Srivastava, Vimal Chandra .
CHEMICAL ENGINEERING JOURNAL, 2020, 386
[3]   Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J].
Chen, Gao-Feng ;
Yuan, Yifei ;
Jiang, Haifeng ;
Ren, Shi-Yu ;
Ding, Liang-Xin ;
Ma, Lu ;
Wu, Tianpin ;
Lu, Jun ;
Wang, Haihui .
NATURE ENERGY, 2020, 5 (08) :605-613
[4]   Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy [J].
Chen, Gao-Feng ;
Cao, Xinrui ;
Wu, Shunqing ;
Zeng, Xingye ;
Ding, Liang-Xin ;
Zhu, Min ;
Wang, Haihui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (29) :9771-9774
[5]   Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis [J].
Chen, Pengzuo ;
Zhang, Nan ;
Wang, Sibo ;
Zhou, Tianpei ;
Tong, Yun ;
Ao, Chengcheng ;
Yan, Wensheng ;
Zhang, Lidong ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (14) :6635-6640
[6]   Towards an ammonia-mediated hydrogen economy? [J].
Christensen, CH ;
Johannessen, T ;
Sorensen, RZ ;
Norskov, JK .
CATALYSIS TODAY, 2006, 111 (1-2) :140-144
[7]   A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions [J].
Cui, Xiaoyang ;
Tang, Cheng ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)
[8]   Powering denitrification: the perspectives of electrocatalytic nitrate reduction [J].
Duca, Matteo ;
Koper, Marc T. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9726-9742
[9]   Denitrification of wastewater containing high nitrate and calcium concentrations [J].
Fernandez-Nava, Y. ;
Maranon, E. ;
Soons, J. ;
Castrillon, L. .
BIORESOURCE TECHNOLOGY, 2008, 99 (17) :7976-7981
[10]   Catalysts for nitrogen reduction to ammonia [J].
Foster, Shelby L. ;
Bakovic, Sergio I. Perez ;
Duda, Royce D. ;
Maheshwari, Sharad ;
Milton, Ross D. ;
Minteer, Shelley D. ;
Janik, Michael J. ;
Renner, Julie N. ;
Greenlee, Lauren F. .
NATURE CATALYSIS, 2018, 1 (07) :490-500