Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst

被引:664
作者
Chen, Feng-Yang [1 ]
Wu, Zhen-Yu [1 ]
Gupta, Srishti [2 ]
Rivera, Daniel J. [2 ]
Lambeets, Sten, V [3 ]
Pecaut, Stephanie [1 ]
Kim, Jung Yoon Timothy [1 ]
Zhu, Peng [1 ]
Finfrock, Y. Zou [4 ]
Meira, Debora Motta [5 ]
King, Graham [5 ]
Gao, Guanhui [6 ]
Xu, Wenqian [7 ]
Cullen, David A. [8 ]
Zhou, Hua [7 ]
Han, Yimo [9 ]
Perea, Daniel E. [10 ]
Muhich, Christopher L. [2 ,11 ]
Wang, Haotian [1 ,9 ,12 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Chem Engn Program, Tempe, AZ 85281 USA
[3] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[4] Argonne Natl Lab, Xray Sci Div, Struct Biol Ctr, Lemont, IL USA
[5] Canadian Light Source, Saskatoon, SK, Canada
[6] Rice Univ, Electron Microscope Ctr, Dept Mat Sci & NanoEngn, Houston, TX USA
[7] Argonne Natl Lab, Adv Photon Source, Lemont, IL USA
[8] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[9] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[10] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Environm Mol Sci Lab, Richland, WA 99352 USA
[11] Arizona State Univ, Mat Sci & Engn Program, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
[12] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会; 加拿大健康研究院; 加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; WASTE-WATER; REDUCTION; NITROGEN; DENITRIFICATION; PERSPECTIVES; SELECTIVITY; CATALYSTS; REMOVAL; EXAFS;
D O I
10.1038/s41565-022-01121-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitrate, a common pollutant in wastewater and groundwater, has been efficiently converted into valuable ammonia products via an electrochemical method using Ru-dispersed Cu nanowire as the catalyst. Electrochemically converting nitrate ions, a widely distributed nitrogen source in industrial wastewater and polluted groundwater, into ammonia represents a sustainable route for both wastewater treatment and ammonia generation. However, it is currently hindered by low catalytic activities, especially under low nitrate concentrations. Here we report a high-performance Ru-dispersed Cu nanowire catalyst that delivers an industrial-relevant nitrate reduction current of 1 A cm(-2) while maintaining a high NH3 Faradaic efficiency of 93%. More importantly, this high nitrate-reduction catalytic activity enables over a 99% nitrate conversion into ammonia, from an industrial wastewater level of 2,000 ppm to a drinkable water level <50 ppm, while still maintaining an over 90% Faradaic efficiency. Coupling the nitrate reduction effluent stream with an air stripping process, we successfully obtained high purity solid NH4Cl and liquid NH3 solution products, which suggests a practical approach to convert wastewater nitrate into valuable ammonia products. Density functional theory calculations reveal that the highly dispersed Ru atoms provide active nitrate reduction sites and the surrounding Cu sites can suppress the main side reaction, the hydrogen evolution reaction.
引用
收藏
页码:759 / +
页数:12
相关论文
共 66 条
  • [1] A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
    Andersen, Suzanne Z.
    Colic, Viktor
    Yang, Sungeun
    Schwalbe, Jay A.
    Nielander, Adam C.
    McEnaney, Joshua M.
    Enemark-Rasmussen, Kasper
    Baker, Jon G.
    Singh, Aayush R.
    Rohr, Brian A.
    Statt, Michael J.
    Blair, Sarah J.
    Mezzavilla, Stefano
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Cargnello, Matteo
    Bent, Stacey F.
    Jaramillo, Thomas F.
    Stephens, Ifan E. L.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. NATURE, 2019, 570 (7762) : 504 - +
  • [2] Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode
    Chauhan, Rohit
    Srivastava, Vimal Chandra
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 386
  • [3] Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst
    Chen, Gao-Feng
    Yuan, Yifei
    Jiang, Haifeng
    Ren, Shi-Yu
    Ding, Liang-Xin
    Ma, Lu
    Wu, Tianpin
    Lu, Jun
    Wang, Haihui
    [J]. NATURE ENERGY, 2020, 5 (08) : 605 - 613
  • [4] Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy
    Chen, Gao-Feng
    Cao, Xinrui
    Wu, Shunqing
    Zeng, Xingye
    Ding, Liang-Xin
    Zhu, Min
    Wang, Haihui
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (29) : 9771 - 9774
  • [5] Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis
    Chen, Pengzuo
    Zhang, Nan
    Wang, Sibo
    Zhou, Tianpei
    Tong, Yun
    Ao, Chengcheng
    Yan, Wensheng
    Zhang, Lidong
    Chu, Wangsheng
    Wu, Changzheng
    Xie, Yi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (14) : 6635 - 6640
  • [6] Towards an ammonia-mediated hydrogen economy?
    Christensen, CH
    Johannessen, T
    Sorensen, RZ
    Norskov, JK
    [J]. CATALYSIS TODAY, 2006, 111 (1-2) : 140 - 144
  • [7] A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
    Cui, Xiaoyang
    Tang, Cheng
    Zhang, Qiang
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [8] Powering denitrification: the perspectives of electrocatalytic nitrate reduction
    Duca, Matteo
    Koper, Marc T. M.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) : 9726 - 9742
  • [9] Denitrification of wastewater containing high nitrate and calcium concentrations
    Fernandez-Nava, Y.
    Maranon, E.
    Soons, J.
    Castrillon, L.
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (17) : 7976 - 7981
  • [10] Catalysts for nitrogen reduction to ammonia
    Foster, Shelby L.
    Bakovic, Sergio I. Perez
    Duda, Royce D.
    Maheshwari, Sharad
    Milton, Ross D.
    Minteer, Shelley D.
    Janik, Michael J.
    Renner, Julie N.
    Greenlee, Lauren F.
    [J]. NATURE CATALYSIS, 2018, 1 (07): : 490 - 500