An Improved Bearing Fault Diagnosis Model of Variational Mode Decomposition Based on Linked Extension Neural Network

被引:2
|
作者
Wang, Tichun [1 ]
Wang, Jiayun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis - Clusterings - Extension neural networks - Fault diagnosis model - Faults diagnosis - Intrinsic Mode functions - Mode decomposition - Network types - Novel algorithm - Vibration signal;
D O I
10.1155/2022/1615676
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In bearing fault diagnosis, due to the insufficient obtained supervised data and the inevitable noise contained in the vibration signals, the problem of clustering bearing fault diagnosis with imbalanced data containing noise is caused. Thanks to the ability to quickly and fully learn boundary information in small samples, the extension neural network-type 2 algorithm (ENN-2) has the potential in imbalanced data clustering and has been gradually applied in fault diagnosis. Therefore, in order to improve the unstable clustering performance of ENN-2 caused by its heavy dependence on input order of samples, a novel algorithm called linked extension neural network (LENN) is developed by redesigning the correlation function and its iterative method, which greatly reduces the clustering iteration epochs of the algorithm. In addition, an evaluation index of clustering quality for this novel algorithm, extension density, is also proposed. After that, a bearing fault diagnosis model of variational mode decomposition (VMD) based denoising and LENN is proposed. Firstly, VMD is used to get intrinsic mode functions (IMFs), and the correlation coefficients of IMFs are calculated for signal denoising. Secondly, the features are extracted from denoised signals and selected by PCA algorithm, and the fault diagnosis is finally completed by LENN. Compared with ENN-2, K-means, FCM, and DBSCAN based models, the proposed model identifies the faults with different severities more accurately and achieves superior diagnostic ability on different imbalance degrees of datasets, which can further lay a foundation for clustering fault diagnosis based on vibration signals.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Novel Fault Diagnosis of a Rolling Bearing Method Based on Variational Mode Decomposition and an Artificial Neural Network
    Liang, Xiaobei
    Yao, Jinyong
    Zhang, Weifang
    Wang, Yanrong
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [2] Bearing fault diagnosis based on empirical mode decomposition and neural network
    Shao, Jiye
    Li, Jie
    Ma, Jiajun
    2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2015, : 118 - 121
  • [3] Gear fault diagnosis based on CS-improved variational mode decomposition and probabilistic neural network
    Lin, Ying
    Xiao, Maohua
    Liu, Huijia
    Li, Zhuolong
    Zhou, Shuang
    Xu, Xiaomei
    Wang, Dicheng
    MEASUREMENT, 2022, 192
  • [4] Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network
    Ding C.
    Feng Y.
    Wang M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (02): : 287 - 296
  • [5] Bearing fault diagnosis based on adaptive variational mode decomposition
    Xue, Jun Zhou
    Lin, Tian Ran
    Xing, Jin Peng
    Ni, Chao
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [6] An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing
    Gai, Jingbo
    Shen, Junxian
    Hu, Yifan
    Wang, He
    MEASUREMENT, 2020, 162 (162)
  • [7] Bearing fault diagnosis based on improved variational mode decomposition and optimized stacked denoising autoencoder
    Zhang B.
    Shu Y.
    Jiang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (04): : 1408 - 1421
  • [8] Rolling Bearing Fault Diagnosis Method Based on Improved Variational Mode Decomposition and Information Entropy
    Ge, Liang
    Fan, Wen
    Xiao, Xiaoting
    Gan, Fangji
    Lai, Xin
    Deng, Hongxia
    Huang, Qi
    ENGINEERING TRANSACTIONS, 2022, 70 (01): : 23 - 51
  • [9] Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network
    Zhang, Qian
    Ma, Wenhao
    Li, Guoli
    Ding, Jinjin
    Xie, Min
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 208
  • [10] A small sample bearing fault diagnosis method based on variational mode decomposition, autocorrelation function, and convolutional neural network
    Yuhui Wu
    Licai Liu
    Shuqu Qian
    The International Journal of Advanced Manufacturing Technology, 2023, 124 : 3887 - 3898