Zeros, factorizations and least common multiples of quaternion polynomials

被引:6
作者
Bolotnikov, Vladimir [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Quaternion polynomial; spherical divisors; least common multiple; REGULAR FUNCTIONS; INTERPOLATION; VANDERMONDE; MATRICES;
D O I
10.1142/S021949881750181X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that quaternion polynomials may have spherical zeros and isolated left and right zeros. These zeros along with appropriately defined multiplicities form the zero structure of a polynomial which can be alternatively described in terms of left and right spherical divisors of a polynomial as well as in terms of its left and right indecomposable divisors. These alternative descriptions are used to construct a polynomial with prescribed zero structure and more generally, to construct the least common multiple of given polynomials. Similar questions are discussed in the context of quaternion power series and particularly, finite Blaschke products.
引用
收藏
页数:23
相关论文
共 31 条
[1]  
Alpay D, 2015, INDIANA U MATH J, V64, P151
[2]   PONTRYAGIN-DE BRANGES-ROVNYAK SPACES OF SLICE HYPERHOLOMORPHIC FUNCTIONS [J].
Alpay, Daniel ;
Colombo, Fabrizio ;
Sabadini, Irene .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 :87-125
[3]   Mobius Transformations and the Poincare Distance in the Quaternionic Setting [J].
Bisi, Cinzia ;
Gentili, Graziano .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2729-2764
[4]   Confluent Vandermonde matrices, divided differences, and Lagrange-Hermite interpolation over quaternions [J].
Bolotnikov, Vladimir .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) :575-599
[5]   Polynomial interpolation over quaternions [J].
Bolotnikov, Vladimir .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) :567-590
[6]  
Brenner J.L., 1951, Pacific Journal of Mathematics, V1, P329
[7]  
Bueso J. L., 2003, MATH MODELLING THEOR, V17
[8]  
Cerlienco L., 1981, REND SEM FS U CAGLIA, V51, P95
[9]   Extension results for slice regular functions of a quaternionic variable [J].
Colombo, Fabrizio ;
Gentili, Graziano ;
Sabadini, Irene ;
Struppa, Daniele .
ADVANCES IN MATHEMATICS, 2009, 222 (05) :1793-1808
[10]  
Colombo F, 2009, TRENDS MATH, P101