Fractional Fourier transform in the framework of fractional calculus operators

被引:30
作者
Kilbas, A. A. [2 ]
Luchko, Yu. F. [1 ]
Martinez, H. [3 ]
Trujillo, J. J. [4 ]
机构
[1] Tech Univ Appl Sci, Dept Math 2, D-13353 Berlin, Germany
[2] Belarusian State Univ, Fac Math & Mech, Minsk 220050, BELARUS
[3] Natl Expt Univ Guayana, Port Ordaz, State Bolivar, Venezuela
[4] Univ La Laguna, Dept Anal Matemat, E-38207 San Cristobal la Laguna, Tenerife, Spain
关键词
Fourier and fractional Fourier transforms; modified Liouville fractional derivatives and integrals; operational relations; diffusion-type fractional differential equation; Laplace transform; Mittag Leffler function; LIZORKIN-TYPE; DENSENESS;
D O I
10.1080/10652461003676099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the study of a fractional Fourier transform in a special space of functions by Lizorkin. Connections of such a transform with differentiation operators are established and an inverse operator for such a transform if constructed. Compositions of the fractional Fourier transform with modified fractional integrals and derivatives are proved. Application to solution of a partial diffusion-type differential equation of fractional order is given.
引用
收藏
页码:779 / 795
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 1963, Mat. Sb
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]  
Brychkov Y.A., 1989, Integral Transforms of Generalized Functions
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]  
Ditkin V.A., 1965, Integral Transforms and Operational Calculus
[6]  
GELFAND I. M., 1968, Generalized Functions II, V2
[7]  
Gerasimov A.N.N., 1948, Prikt. Mat. Mek, V12, P251
[8]  
LIZORKIN PI, 1969, P STEKLOV I MATH, V105, P105
[9]  
Luchko Y., 2008, Fract. Calc. Appl. Anal., V11, P457
[10]  
Ozaktas H. M., 2001, The Fractional Fourier Transform With Applications in Optics and Signal Processing