On the rational recursive sequence yn = A + yn-1yn-m for small A

被引:5
作者
Berenhaut, Kenneth S. [1 ]
Donadio, Katherine M. [1 ]
Foley, John D. [2 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Rational difference equation; Periodicity; Existence; Binomial coefficients; Fixed point;
D O I
10.1016/j.aml.2007.07.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work studies the existence of positive prime periodic solutions of higher order for rational recursive equations of the form y(n) = A + y(n-1)/y(n-m), n = 0, 1, 2,.... with y(-m), y(-m+1),....y(-1) epsilon (0,infinity) and m epsilon {2, 3, 4,...}. In particular, we show that for sufficiently small A > 0, there exist periodic solutions with prime period 2m + U-m + 1, for almost all m, where U-m = max{i epsilon N : i(i + 1) <= 2(m - 1)}. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:906 / 909
页数:4
相关论文
共 17 条
[1]   Global stability of yn+1=A+yn/yn-k [J].
Abu-Saris, RM ;
DeVault, R .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :173-178
[2]  
AMIEH AM, 1999, J MATH ANAL APPL, V233, P790
[3]  
[Anonymous], 1993, MATH ITS APPL
[4]   The global attractivity of the rational difference equation yn=A+(yn-k/yn-m)p [J].
Berenhaut, Kenneth S. ;
Foley, John D. ;
Stevic, Stevo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :103-110
[5]   The global attractivity of the rational difference equation [J].
Berenhaut, Kenneth S. ;
Foley, John D. ;
Stevic, Stevo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :1133-1140
[6]   The behaviour of the positive solutions of the difference equation [J].
Berenhaut, Kenneth S. ;
Stevic, Stevo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (09) :909-918
[7]   Quantitative bounds for the recursive sequence yn+1 = A+yn/yn-k [J].
Berenhaut, Kenneth S. ;
Foley, John D. ;
Stevic, Stevo .
APPLIED MATHEMATICS LETTERS, 2006, 19 (09) :983-989
[8]   A note on positive non-oscillatory solutions of the difference equation xn+1 = α + xpn-k xpn [J].
Berenhaut, Kenneth S. ;
Stevic, Stevo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (05) :495-499
[9]   On the recursive sequence Xn+1 = p+Xn-k/Xn [J].
DeVault, R ;
Kent, C ;
Kosmala, W .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (08) :721-730
[10]  
EIOWAIDY HM, 2003, J APPL MATH COMPUT, V12, P31