A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem

被引:39
作者
Brenner, S. C. [1 ,2 ]
Cui, J. [1 ]
Li, F. [3 ]
Sung, L. -Y. [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
curl-curl and grad-div problem; nonconforming finite element methods; Maxwell equations;
D O I
10.1007/s00211-008-0149-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for a two-dimensional curl-curl and grad-div problem is studied in this paper. It is based on a discretization using weakly continuous P-1 vector fields and includes two consistency terms involving the jumps of the vector fields across element boundaries. Optimal convergence rates ( up to an arbitrary positive is an element of) in both the energy norm and the L-2 norm are established on graded meshes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:509 / 533
页数:25
相关论文
共 54 条
[1]  
[Anonymous], RAIRO R
[2]  
Apel T, 1996, MATH METHOD APPL SCI, V19, P63, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO
[3]  
2-S
[4]  
Apel T, 1999, ANISOTROPIC FINITE E
[5]   Time-dependent Maxwell's equations with charges in singular geometries [J].
Assous, F. ;
Ciarlet, P., Jr. ;
Garcia, E. ;
Segre, J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) :665-681
[6]  
Assous F, 1998, RAIRO-MATH MODEL NUM, V32, P359
[7]   Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains:: the singular complement method [J].
Assous, F ;
Ciarlet, P ;
Labrunie, S ;
Segré, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) :147-176
[8]  
ASSOUS F, 2002, DOMAIN DECOMPOSITION, P161
[9]  
Babuska I., 1991, Finite Element Methods, V2, P641
[10]   Improving the rate of convergence of 'high order finite elements' on polygons and domains with cusps [J].
Bacuta, C ;
Nistor, V ;
Zikatanov, LT .
NUMERISCHE MATHEMATIK, 2005, 100 (02) :165-184