RETHINKING POLYHEDRALITY FOR LINDENSTRAUSS SPACES

被引:15
作者
Casini, Emanuele [1 ]
Miglierina, Enrico [2 ]
Piasecki, Lukasz [3 ]
Vesely, Libor [4 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[2] Univ Cattolica Sacro Cuore, Dipartimento Discipline Matemat Finanza Matemat &, Via Necchi 9, I-20123 Milan, Italy
[3] Uniwersytet Marii Curie Sklodowskiej, Inst Matemat, Pl Marii Curie Sklodowskiej 1, PL-20031 Lublin, Poland
[4] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
BANACH-SPACES; SUBSPACES; DUALS;
D O I
10.1007/s11856-016-1412-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Lindenstrauss space with an extreme point that does not contain a subspace linearly isometric to c. This example disproves a result stated by Zippin in a paper published in 1969 and it shows that some classical characterizations of polyhedral Lindenstrauss spaces, based on Zippin's result, are false, whereas some others remain unproven; then we provide a correct proof for those characterizations. Finally, we also disprove a characterization of polyhedral Lindenstrauss spaces given by Lazar, in terms of the compact norm-preserving extension of compact operators, and we give an equivalent condition for a Banach space X to satisfy this property.
引用
收藏
页码:355 / 369
页数:15
相关论文
共 18 条
[1]  
ALSPACH D.E., 1993, Contemporary Mathematics, V144, P9
[2]  
Brosowski B., 1974, Journal of Approximation Theory, V10, P245, DOI 10.1016/0021-9045(74)90122-1
[3]  
Casini E., 2015, ARXIV150308875MATHFA
[4]   Hyperplanes in the Space of Convergent Sequences and Preduals of l1 [J].
Casini, Emanuele ;
Miglierina, Enrico ;
Piasecki, Lukasz .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03) :459-470
[5]   POLYHEDRAL NORMS IN AN INFINITE-DIMENSIONAL SPACE [J].
DURIER, R ;
PAPINI, PL .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (03) :863-875
[6]   Infinite-dimensional polyhedrality [J].
Fonf, VP ;
Vesely, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (03) :472-494
[7]  
Fonf VP, 2001, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 1, P599, DOI 10.1016/S1874-5849(01)80017-6
[8]   On contractively complemented subspaces of separable L1-preduals [J].
Gasparis, I .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 128 (1) :77-92
[9]   POLYHEDRAL BANACH SPACES [J].
GLEIT, A ;
MCGUIGAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 33 (02) :398-&
[10]   POLYHEDRAL SECTIONS OF CONVEX BODIES [J].
KLEE, V .
ACTA MATHEMATICA, 1960, 103 (3-4) :243-267