COMBINATORIAL HOPF ALGEBRAS OF SIMPLICIAL COMPLEXES

被引:14
作者
Benedetti, Carolina [1 ]
Hallam, Joshua [2 ]
Machacek, John [3 ]
机构
[1] Fields Inst, Toronto, ON, Canada
[2] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
combinatorial Hopf algebra; quasi-symmetric functions; simplicial complex; colorings;
D O I
10.1137/15M1038281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their f-vectors. We also use characters to give a generalization of Stanley's (-1)-color theorem. A q-analogue version of this family of characters is also studied.
引用
收藏
页码:1737 / 1757
页数:21
相关论文
共 16 条
[1]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[2]  
Aguiar M., COMBINATORIAL UNPUB
[3]  
Dobrinskaya N., 2010, ARXIV10070710V1
[4]  
Grinberg Darij, 2015, ARXIV14098356V3
[5]   Generalized Dehn-Sommerville relations for hypergraphs [J].
Grujic, Vladimir ;
Stojadinovic, Tanja ;
Jojic, Dusko .
EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (02) :459-473
[6]   THE INCIDENCE HOPF ALGEBRA OF GRAPHS [J].
Humpert, Brandon ;
Martin, Jeremy L. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) :555-570
[7]   On distinguishing trees by their chromatic symmetric functions [J].
Martin, Jeremy L. ;
Morin, Matthew ;
Wagner, Jennifer D. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) :237-253
[8]   Chromatic Polynomials of Simplicial Complexes [J].
Moller, Jesper M. ;
Nord, Gesche .
GRAPHS AND COMBINATORICS, 2016, 32 (02) :745-772
[9]  
Nord G., 2012, THESIS
[10]   Graphs with equal chromatic symmetric functions [J].
Orellana, Rosa ;
Scott, Geoffrey .
DISCRETE MATHEMATICS, 2014, 320 :1-14