STABILITY OF AVERAGE ROUGHNESS, OCTAHEDRALITY, AND STRONG DIAMETER 2 PROPERTIES OF BANACH SPACES WITH RESPECT TO ABSOLUTE SUMS

被引:12
作者
Haller, Rainis [1 ]
Langemets, Johann [1 ]
Nadel, Rihhard [1 ]
机构
[1] Univ Tartu, Inst Math, J Liivi 2, EE-50409 Tartu, Estonia
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2018年 / 12卷 / 01期
关键词
average rough norm; octahedral norm; diameter; 2; property; Daugavet property; DAUGAVET PROPERTY; NORMS; OPERATORS; SLICES;
D O I
10.1215/17358787-2017-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that, if Banach spaces X and Y are delta-average rough, then their direct sum with respect to an absolute norm N is delta/N (1; 1)-average rough. In particular, for octahedral X and Y and for p in (1; 1), the space X circle plus(p) Y is 2(1-1/p)-average rough, which is in general optimal. Another consequence is that for any delta in (1; 2] there is a Banach space which is exactly delta-average rough. We give a complete characterization when an absolute sum of two Banach spaces is octahedral or has the strong diameter 2 property. However, among all of the absolute sums, the diametral strong diameter 2 property is stable only for 1- and infinity-sums.
引用
收藏
页码:222 / 239
页数:18
相关论文
共 15 条
  • [1] Abrahamsen T, 2013, J CONVEX ANAL, V20, P439
  • [2] Acosta MD, 2015, J CONVEX ANAL, V22, P1
  • [3] Becerra Guerrero J., ARXIV150902061V4MATH
  • [4] Octahedral norms in spaces of operators
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (01) : 171 - 184
  • [5] Octahedral norms and convex combination of slices in Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) : 2424 - 2435
  • [6] Narrow operators and the Daugavet property for ultraproducts
    Bilik, D
    Kadets, V
    Shvidkoy, R
    Werner, D
    [J]. POSITIVITY, 2005, 9 (01) : 45 - 62
  • [7] Bonsall F.F., 1973, LONDON MATH SOC LECT
  • [8] A DUAL CHARACTERIZATION OF THE EXISTENCE OF SMALL COMBINATIONS OF SLICES
    DEVILLE, R
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (01) : 113 - 120
  • [9] GODEFROY G, 1989, STUD MATH, V95, P1
  • [10] Diametral strong diameter two property of Banach spaces is stable under direct sums with 1-norm
    Haller, Rainis
    Pirk, Katriin
    Poldvere, Mart
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 101 - 105