Capacity and Covering Numbers

被引:0
作者
Ransford, Thomas [1 ]
Selezneff, Alexis [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Capacity; Covering number; Cantor set; K-set; CANTOR SETS;
D O I
10.1007/s11118-011-9226-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the inequality 1/C(K)(E) >= integral(infinity)(0) |d(K(t))|/N(E)(t), where E is a compact metric space, K is a kernel function, C(K) is the associated capacity, and NE( t) denotes the minimal number of sets of diameter t needed to cover E. We give applications to the capacity of generalized Cantor sets, and to the capacity of delta-neighborhoods of a set. We also investigate possible converses to the inequality.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 9 条
[1]   On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set [J].
Altun, Muhammed ;
Goncharov, Alexander .
CONSTRUCTIVE APPROXIMATION, 2011, 33 (02) :265-271
[2]  
[Anonymous], 1967, Selected problems on exceptional sets
[3]  
Bruna J., 1982, LECT NOTES MATH, V908, P74
[4]   THE PSEUDOANALYTIC EXTENSION [J].
DYNKIN, EM .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 60 :45-70
[5]  
Eiderman VY, 2005, OPER THEOR, V158, P131
[6]   Cantor sets and cyclicity in weighted Dirichlet spaces [J].
El-Fallah, O. ;
Kellay, K. ;
Ransford, T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) :565-573
[7]   Capacities of certain Cantor sets [J].
Monterie, MA .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (02) :247-266
[8]   Computation of capacity via quadratic programming [J].
Rajon, Quentin ;
Ransford, Thomas ;
Rostand, Jeremie .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (04) :398-413
[9]  
Ransford T, 2010, COMPUT METH FUNCT TH, V10, P555