Positive eigenfunctions of a Schrodinger operator

被引:10
作者
Stuart, CA [1 ]
Zhou, HS
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, IACS, FSB, CH-1015 Lausanne, Switzerland
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2005年 / 72卷
基金
中国国家自然科学基金;
关键词
D O I
10.1112/S0024610705006873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers the eigenvalue problem -Delta u-alpha u+lambda g(x)u = 0 with u is an element of H-1(R-N), u not equal 0, where alpha, lambda is an element of R and g(x) equivalent to 0 on (Omega) over bar, g(x) is an element of (0, 1) on R-N and lim (vertical bar x vertical bar ->+infinity g) g(x) = 1 for some bounded open set Omega is an element of R-N. Given a > 0, does there exist a value of A > 0 for which the problem has a positive solution? It is shown that this occurs if and only if a lies in a certain interval (Gamma, xi(1)) and that in this case the value of lambda is unique, lambda = Lambda (alpha). The properties of the function Lambda(alpha) are also discussed.
引用
收藏
页码:429 / 441
页数:13
相关论文
共 10 条
[1]  
ALT HW, 1992, LINEARE FUNCTIONAL A
[2]  
BERTHIER AM, 1982, SPECTRAL THEORY WAVE
[3]  
Edmunds D. E., 1987, Spectral Theory and Differential Operators
[4]  
Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
[5]  
Jeanjean H, 1999, MATH Z, V230, P79, DOI 10.1007/PL00004690
[6]  
MAZJA VG, 1985, SOBOLEV SPACES, P115
[7]  
RABIER PJ, 2003, APP6 7ATH GOLDEN AGE, P1
[8]  
REED M., 1978, Methods of modern mathematical physics: IV: Analysis of operators, VIV
[9]  
Stuart CA, 1998, NONLINEAR FUNCTIONAL ANALYSIS AND APPLICATIONS TO DIFFERENTIAL EQUATIONS, PROCEEDINGS OF THE SECOND SCHOOL, P237
[10]  
STUART CA, 2004, GLOBAL BRANCH SOLUTI