RECONSTRUCTING DNA COPY NUMBER BY PENALIZED ESTIMATION AND IMPUTATION
被引:15
|
作者:
Zhang, Zhongyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Zhang, Zhongyang
[1
]
Lange, Kenneth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biomath Human Genet & Stat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Lange, Kenneth
[2
]
Ophoff, Roel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Ctr Neurobehav Genet, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Ophoff, Roel
[3
]
Sabatti, Chiara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
Sabatti, Chiara
[1
,4
]
机构:
[1] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biomath Human Genet & Stat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ctr Neurobehav Genet, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
来源:
ANNALS OF APPLIED STATISTICS
|
2010年
/
4卷
/
04期
关键词:
l(1) penalty;
fused lasso;
dynamic programming;
MM algorithm;
HIDDEN-MARKOV MODEL;
SNP GENOTYPING DATA;
HUMAN GENOME;
FUSED LASSO;
CGH DATA;
SCHIZOPHRENIA;
ALGORITHMS;
REGRESSION;
PLATFORMS;
D O I:
10.1214/10-AOAS357
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Recent advances in genomics have underscored the surprising ubiquity of DNA copy number variation (CNV). Fortunately, modern genotyping platforms also detect CNVs with fairly high reliability. Hidden Markov models and algorithms have played a dominant role in the interpretation of CNV data. Here we explore CNV reconstruction via estimation with a fused-lasso penalty as suggested by Tibshirani and Wang [Biostatistics 9 (2008) 18-29]. We mount a fresh attack on this difficult optimization problem by the following: (a) changing the penalty terms slightly by substituting a smooth approximation to the absolute value function, (b) designing and implementing a new MM (majorization-minimization) algorithm, and (c) applying a fast version of Newton's method to jointly update all model parameters. Together these changes enable us to minimize the fused-lasso criterion in a highly effective way. We also reframe the reconstruction problem in terms of imputation via discrete optimization. This approach is easier and more accurate than parameter estimation because it relies on the fact that only a handful of possible copy number states exist at each SNP. The dynamic programming framework has the added bonus of exploiting information that the current fused-lasso approach ignores. The accuracy of our imputations is comparable to that of hidden Markov models at a substantially lower computational cost.
机构:
Department of Cellular and Structural Biology,The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San AntonioDepartment of Cellular and Structural Biology,The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio
Laura L.Clay Montier
Janice J.Deng
论文数: 0引用数: 0
h-index: 0
机构:
Department of Cellular and Structural Biology,The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San AntonioDepartment of Cellular and Structural Biology,The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio