Ion-Intercalation Assisted Solvothermal Synthesis and Optical Characterization of MoS2 Quantum Dots

被引:11
作者
Ali, Luqman [1 ]
Bang, Seokjae [1 ]
Lee, Yong Joong [2 ]
Byeon, Clare Chisu [2 ]
机构
[1] Kyungpook Natl Univ, Grad Sch, Dept Mech Engn, Daegu 41566, South Korea
[2] Kyungpook Natl Univ, Sch Mech Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
MoS2 quantum dot; Ion intercalation; Ultrasonic exfoliation; Photoluminescence; HYDROGEN EVOLUTION REACTION; MOLYBDENUM-DISULFIDE; MONOLAYER MOS2; UP-CONVERSION; LARGE-AREA; FACILE; PHOTOLUMINESCENCE; SEMICONDUCTOR; NANOSHEETS; STABILITY;
D O I
10.3938/jkps.74.191
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many of the previously reported preparation methods for MoS2 quantum dots (QDs) are limited by production rate, time consumption, tedious processes or the final quality of the as-prepared QDs. Therefore, a simple and productive method for large-scale production of high-quality MoS2 QDs is still a challenge. We report a facile, low cost and environmentally friendly ion-intercalation assisted solvothermal route for the preparation of MoS2 QDs. In the reported method, NaOH is used as the Na+ ion source to intercalate and exfoliate the commercial MoS2 powder into nanosheets and then QDs. The reaction is carried out at a certain temperature in a Teflon-lined autoclave reactor. The UV-Vis absorption spectra of the as synthesized QDs show a peak in the near UV region ( < 300 nm) instead of the characteristic peaks for the nanosheets. Characterization by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy also confirmed that the as-synthesized QDs had a uniform size distribution in the range of a few nanometers with mostly a monolayer structure and showed good photoluminescence (PL) properties. The proposed method has much potential for further enhancing the yield of MoS2 QDs by taking advantage of the nature of solution-based processes.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 49 条
[1]   Synthesis of MoS2 nanorods and their catalytic test in the HDS of dibenzothiophene [J].
Albiter, M. A. ;
Huirache-Acuna, R. ;
Paraguay-Delgado, F. ;
Rico, J. L. ;
Alonso-Nunez, G. .
NANOTECHNOLOGY, 2006, 17 (14) :3473-3481
[2]   Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides [J].
Ayari, Anthony ;
Cobas, Enrique ;
Ogundadegbe, Ololade ;
Fuhrer, Michael S. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[3]   Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots [J].
Benson, John ;
Li, Meixian ;
Wang, Shuangbao ;
Wang, Peng ;
Papakonstantinou, Pagona .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (25) :14113-14122
[4]  
Brandrup J., 1999, Polymer Handbook, VII
[5]   Catalytic properties of single layers of transition metal sulfide catalytic materials [J].
Chianelli, Russell R. ;
Siadati, Mohammad H. ;
De la Rosa, Myriam Perez ;
Berhault, Gilles ;
Wilcoxon, Jess P. ;
Bearden, Roby, Jr. ;
Abrams, Billie L. .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2006, 48 (01) :1-41
[6]   Size-dependent spectroscopy of MoS2 nanoclusters [J].
Chikan, V ;
Kelley, DF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (15) :3794-3804
[7]   Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions [J].
David, F ;
Vokhmin, V ;
Ionova, G .
JOURNAL OF MOLECULAR LIQUIDS, 2001, 90 (1-3) :45-62
[8]   Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy [J].
Dong, Haifeng ;
Tang, Songsong ;
Hao, Yansong ;
Yu, Haizhu ;
Dai, Wenhao ;
Zhao, Guifeng ;
Cao, Yu ;
Lu, Huiting ;
Zhang, Xueji ;
Ju, Huangxian .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) :3107-3114
[9]   DEPOSITION AND PROPERTIES OF MOS2 THIN-FILMS GROWN BY PULSED LASER EVAPORATION [J].
DONLEY, MS ;
MURRAY, PT ;
BARBER, SA ;
HAAS, TW .
SURFACE & COATINGS TECHNOLOGY, 1988, 36 (1-2) :329-340
[10]   Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries [J].
Du, Guodong ;
Guo, Zaiping ;
Wang, Shiquan ;
Zeng, Rong ;
Chen, Zhixin ;
Liu, Huakun .
CHEMICAL COMMUNICATIONS, 2010, 46 (07) :1106-1108