Antibacterial nanostructures derived from oxidized sodium alginate-ZnO

被引:25
作者
Dwivedi, L. M. [1 ,2 ]
Baranwal, K. [1 ]
Gupta, S. [1 ]
Mishra, M. [2 ]
Sundaram, S. [2 ]
Singh, V [1 ]
机构
[1] Univ Allahabad, Dept Chem, Allahabad 211002, Uttar Pradesh, India
[2] Univ Allahabad, Dept Biotechnol, Allahabad 211002, Uttar Pradesh, India
关键词
Zinc oxide; Sodium alginate; Oxidation; Nanocomposite; Antibacterial activity; ZINC-OXIDE NANOPARTICLES; HYDROGEN-PEROXIDE; GREEN SYNTHESIS; GUM; NANOCOMPOSITE; OXIDATION; CELLULOSE; ALBUMIN; STARCH; SIZE;
D O I
10.1016/j.ijbiomac.2020.02.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present study describes synthesis, characterization and antibacterial application of oxidized sodium alginate (OSA)-zinc oxide (ZnO) hybrid nanostructures (OSA-ZnO). In continuation to our previous study on oxidized guar gum (OGG)-ZnO (OGG-ZnO) nanocomposite, in the present study we have chosen OSA to understand the role of polysaccharide charge type in designing the antibacterial material. The nanomaterial has been characterized using UV-visible, FTIR, XRD, SEM and TEM analyses. The nanostructure has shown crystalline nature having hexagonal phase with preferred (101) orientation, while TEM image indicated that the material has similar to 6 nm particle size. It exhibited very good antibacterial performance against Bacillus subtilis (B. subtilis), Cellulomonas cellulans (C. cellulans), Staphylococcus typhi (S. typhi), and Escherichia coli (E. coli) bacterial strains, 201 for B. subtilis, C. cellulans, S. typhi, and E. coli being 22, 18,19.5 and 18.5 mm respectively. Under identical conditions, pure ZnO showed significantly lower ZOI for the corresponding bacterial strains (14, 12.5, 12 and 13.5 mm respectively), while native SA and OSA did not exhibit any biological activity. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1323 / 1330
页数:8
相关论文
共 44 条
[1]   RADIOIODINATION OF ALGINATE VIA COVALENTLY-BOUND TYROSINAMIDE ALLOWS MONITORING OF ITS FATE IN-VIVO [J].
ALSHAMKHANI, A ;
DUNCAN, R .
JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 1995, 10 (01) :4-13
[2]  
[Anonymous], 2013, AM J MAT SCI
[3]   Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium [J].
Brayner, R ;
Ferrari-Iliou, R ;
Brivois, N ;
Djediat, S ;
Benedetti, MF ;
Fiévet, F .
NANO LETTERS, 2006, 6 (04) :866-870
[4]   Alginate/gum acacia bipolymeric nanohydrogels-Promising carrier for Zinc oxide nanoparticles [J].
Chopra, Meenu ;
Bernela, Manju ;
Kaur, Pawan ;
Manuja, Anju ;
Kumar, Balvinder ;
Thakur, Rajesh .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 72 :827-833
[5]   Emerging and re-emerging infectious diseases [J].
Desselberger, U .
JOURNAL OF INFECTION, 2000, 40 (01) :3-15
[6]   Quick single-step mechanosynthesis of ZnO nanorods and their optical characterization: milling time dependence [J].
Dhara S. ;
Giri P.K. .
Applied Nanoscience, 2011, 1 (4) :165-171
[7]   Synthesis of oxidized guar gum by dry method and its application in reactive dye printing [J].
Gong, Honghong ;
Liu, Mingzhu ;
Zhang, Bing ;
Cui, Dapeng ;
Gao, Chunmei ;
Ni, Boli ;
Chen, Jiucun .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 49 (05) :1083-1091
[8]   OXIDATION OF STARCH BY HYDROGEN PEROXIDE IN PRESENCE OF UV LIIGHT .1. [J].
HARMON, RE ;
GUPTA, SK ;
JOHNSON, J .
STARKE, 1971, 23 (10) :347-&
[9]   Preparation and characterization of colloidal ZnO nanoparticles using nanosecond laser ablation in water [J].
Ismail R.A. ;
Ali A.K. ;
Ismail M.M. ;
Hassoon K.I. .
Applied Nanoscience, 2011, 1 (1) :45-49
[10]   Oxidative destruction of chitosan under the effect of ozone and hydrogen peroxide [J].
Kabal'nova, NN ;
Murinov, KY ;
Mullagaliev, IR ;
Krasnogorskaya, NN ;
Shereshovets, VV ;
Monakov, YB ;
Zaikov, GE .
JOURNAL OF APPLIED POLYMER SCIENCE, 2001, 81 (04) :875-881