Kantorovich Operators of Order k

被引:40
作者
Gonska, Heiner [2 ]
Heilmann, Margareta [1 ]
Rasa, Ioan [3 ]
机构
[1] Univ Wuppertal, Fac Math & Nat Sci, D-42119 Wuppertal, Germany
[2] Univ Duisburg Essen, Fac Math, Duisburg, Germany
[3] Tech Univ, Dept Math, Cluj Napoca, Romania
关键词
Bernstein operators; Degree of approximation; First and second order moduli of continuity; Kantorovich operators (of higher order); Positive linear operators; Simultaneous approximation; Voronovskaya's theorem; BERNSTEIN POLYNOMIALS; APPROXIMATION;
D O I
10.1080/01630563.2011.580877
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the k-th order Kantorovich modification of the classical Bernstein operators Bn, namely, [image omitted], where Dkf is the derivative of order k and Ikf is an antiderivative of order k of the function f. These operators are most useful in simultaneous approximation. We give detailed expressions of the moments up to order four of [image omitted] and estimates of ratios of moments. Next, they are used to refine Voronovskaya's result for derivative approximation by Bn. The properties of [image omitted] as approximation operators are also investigated.
引用
收藏
页码:717 / 738
页数:22
相关论文
共 26 条
[1]  
[Anonymous], STUDIA SCI MATH HUNG
[2]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[3]  
Berens H., 1976, APPROXIMATION THEORY, P289
[4]  
BRUDNYJ YA, 1955, ISSLED SOVREM PROBL, P40
[5]   SUMMABILITY OF GENERALIZED BERNSTEIN POLYNOMIALS .1. [J].
BUTZER, PL .
DUKE MATHEMATICAL JOURNAL, 1955, 22 (04) :617-623
[6]  
CAMPITI M, 2000, HDB ANAL COMPUTATION, P947
[7]   On the convergence of derivatives of Bernstein approximation [J].
Floater, MS .
JOURNAL OF APPROXIMATION THEORY, 2005, 134 (01) :130-135
[8]  
Freud G., 1967, STUD SCI MATH HUNG, V2, P63
[9]  
GONSKA H., 1979, THESIS U DUISBURG
[10]  
GONSKA H., 2009, MATH INEQUALITIES, P76