Unexpectedly high energy density of a Li-Ion battery by oxygen redox in LiNiO2 cathode: First-principles study

被引:25
作者
Choi, Daehyeon [1 ]
Kang, Joonhee [1 ]
Han, Byungchan [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
First-principles calculation; Li-ion battery; Density of states; Cluster expansion; Monte Carlo simulation; ANIONIC REDOX; HIGH-CAPACITY; CRYSTAL-STRUCTURE; LITHIUM; OXIDES; PHASE; ELECTROCHEMISTRY; LI-1-ZNI1+ZO2; CONDUCTIVITY; GENERATION;
D O I
10.1016/j.electacta.2018.10.113
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Conventionally neglected mechanism of reversible redox reactions by oxygen ions in lithium-nickel oxide materials (LNO; Li2xNi2-2xO2, 0 < x < 1) is proposed as a primary cause of unexpectedly high energy density of Li- ion battery. Using first-principles density functional theory calculations, cluster expansion theory, and Monte Carlo simulations, we unveil the underlying mechanism that is ascribed to the phase transition between layered and rocksalt structures initiated by cation disordering of Li and Ni at certain Li composition. At x = 0.5, the oxygen ions are put under specific chemical bondings of straight-linear type Li-O-Li configuration. They enable an active oxygen redox reaction involving peroxo (O-2(2-)) and superoxo (O-2(-)) ions, shown to dramatically increase the energy density of the LNO cathode. Using Monte Carlo simulations, we identify the proportional information to find the Li-O-Li configurations around the synthetic temperature of LNO materials. Our results indicate that the cation-disorder is a driving force for the oxygen redox via formation of the specific bondings. On the basis of our study, it is expected to provide useful guidelines for the design of Li- ion batteries with high energy densities beyond conventional ones. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:166 / 172
页数:7
相关论文
共 52 条
  • [1] Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides
    Abdellahi, Aziz
    Urban, Alexander
    Dacek, Stephen
    Ceder, Gerbrand
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (15) : 5373 - 5383
  • [2] Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
    Abraham, DP
    Twesten, RD
    Balasubramanian, M
    Petrov, I
    McBreen, J
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) : 620 - 625
  • [3] CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD
    ARAI, H
    OKADA, S
    OHTSUKA, H
    ICHIMURA, M
    YAMAKI, J
    [J]. SOLID STATE IONICS, 1995, 80 (3-4) : 261 - 269
  • [4] Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
    Assat, Gaurav
    Tarascon, Jean-Marie
    [J]. NATURE ENERGY, 2018, 3 (05): : 373 - 386
  • [5] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [6] Phase diagrams of lithium transition metal oxides: investigations from first principles
    Ceder, G
    Van der Ven, A
    [J]. ELECTROCHIMICA ACTA, 1999, 45 (1-2) : 131 - 150
  • [7] Structure of Lithium Peroxide
    Chan, Maria K. Y.
    Shirley, Eric L.
    Karan, Naba K.
    Balasubramanian, Mahalingam
    Ren, Yang
    Greeley, Jeffrey P.
    Fister, Tim T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (19): : 2483 - 2486
  • [8] First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn2O4 cathode and carbonate electrolyte in Li-ion batteries
    Choi, Daehyeon
    Kang, Joonhee
    Park, Jinwoo
    Han, Byungchan
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (17) : 11592 - 11597
  • [9] STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE
    DAHN, JR
    VONSACKEN, U
    MICHAL, CA
    [J]. SOLID STATE IONICS, 1990, 44 (1-2) : 87 - 97
  • [10] de Dompablo MEAY, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.064112