A Local Collaborative Distributed Reinforcement Learning Approach for Resource Allocation in V2X Networks

被引:0
作者
Zhang, Yue [1 ]
Tan, Guoping [1 ,2 ]
Zhou, Siyuan [1 ,2 ]
机构
[1] Hohai Univ, Sch Comp & Informat, Nanjing, Peoples R China
[2] Jiangsu Intelligent Transportat & Intelligent Dri, Nanjing, Peoples R China
来源
WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II | 2021年 / 12938卷
基金
中国国家自然科学基金;
关键词
V2X; Resource allocation; Local collaboration; Reinforcement learning;
D O I
10.1007/978-3-030-86130-8_35
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a resource allocation approach for V2X networks based on distributed reinforcement learning with local collaboration. We construct a local collaborative mechanism for sharing information among vehicles. In this model each vehicle is able to obtain the instantaneously information of the environment shared by neighboring vehicles. By adopting proximal policy optimization algorithm, we addressed the issues of the joint allocation of spectrum and transmit power in a distributed manner. The simulation results show that agents can effectively learn an optimized strategy by cooperating with other vehicles in the adjacent area, so as to maximize the ergodic V2I capacity of the whole system while meeting the strict delay limits of the V2V link.
引用
收藏
页码:442 / 454
页数:13
相关论文
共 10 条
[1]   Computation Offloading and Resource Allocation in Vehicular Networks Based on Dual-Side Cost Minimization [J].
Du, Jianbo ;
Yu, F. Richard ;
Chu, Xiaoli ;
Feng, Jie ;
Lu, Guangyue .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (02) :1079-1092
[2]   Resource Allocation for Low-Latency Vehicular Communications: An Effective Capacity Perspective [J].
Guo, Chongtao ;
Liang, Le ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (04) :905-917
[3]   Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning [J].
Liang, Le ;
Ye, Hao ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) :2282-2292
[4]   A Survey on Resource Allocation in Vehicular Networks [J].
Noor-A-Rahim, Md ;
Liu, Zilong ;
Lee, Haeyoung ;
Ali, G. G. Md Nawaz ;
Pesch, Dirk ;
Xiao, Pei .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) :701-721
[5]   Learn to Compress CSI and Allocate Resources in Vehicular Networks [J].
Wang, Liang ;
Ye, Hao ;
Liang, Le ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3640-3653
[6]  
Wei HR, 2019, IEEE VEHIC NETW CONF, DOI [10.1109/vnc48660.2019.9062809, 10.1145/3356473.3365188]
[7]  
Yang T., 2018, 2018 15th International Symposium on Wireless Communication Systems (ISWCS), P1, DOI 10.1109/NAS.2018.8515719
[8]  
Ye H, 2018, IEEE ICC
[9]   Deep Reinforcement Learning Based Resource Allocation for V2V Communications [J].
Ye, Hao ;
Li, Geoffrey Ye ;
Juang, Biing-Hwang Fred .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (04) :3163-3173
[10]   Interference Graph-Based Resource-Sharing Schemes for Vehicular Networks [J].
Zhang, Rongqing ;
Cheng, Xiang ;
Yao, Qi ;
Wang, Cheng-Xiang ;
Yang, Yang ;
Jiao, Bingli .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (08) :4028-4039