Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales

被引:48
作者
Hassan, Taher S. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Oscillation; Second order; Nonlinear dynamic equations; Time scales; DELAY;
D O I
10.1016/j.amc.2010.11.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper to establish oscillation criteria for second order nonlinear dynamic equation (r(t)(x(Delta)(t))(gamma))(Delta) + f(t, x(g(t))) - 0; on an arbitrary time scale T, where gamma is a quotient of odd positive integers and r is a positive rd-continuous function on T. The function g : T -> T satisfies g(t) >= t and lim(t -> g)(t) = infinity and f is an element of C(T x R, R). We establish some new sufficient conditions such that the above equation is oscillatory by using generalized Riccati transformation. Our results in the special cases when T = R and T = N involve and improve some oscillation results for second-order differential and difference equations; and when T = hN; T = q(N0) and T = N-2 our oscillation results are essentially new. Some examples illustrating the importance of our results are included. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5285 / 5297
页数:13
相关论文
共 33 条
[1]  
Agarwal R.P., 2005, Can. Appl. Math. Quart, V13, P1
[2]   Philos-type oscillation criteria for second order half-linear dynamic equations on time scales [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Saker, S. H. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (04) :1085-1104
[3]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[4]  
Atkinson F. V., 1955, PAC J MATH, V5, P643
[5]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[7]  
Dosly O., 2001, MATH BOHEM, V10, P181
[8]   Oscillation criteria for second-order nonlinear delay dynamic equations [J].
Erbe, L. ;
Peterson, A. ;
Saker, S. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :505-522
[9]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714
[10]   Hille-Kneser-type criteria for second-order dynamic equations on time scales [J].
Erbe, L. ;
Peterson, A. ;
Saker, S. H. .
ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)