Data exploration with reflective adaptive models

被引:25
作者
Beyer, U [1 ]
Smieja, F [1 ]
机构
[1] GERMAN NATL RES CTR INFORMAT TECHNOL GMD,D-53754 ST AUGUSTIN,GERMANY
关键词
open systems; reflection; density-based exploration; error-based exploration;
D O I
10.1016/0167-9473(95)00048-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Adaptive models of systems seek to emulate the processes giving rise to the data observed in the system. The process is often termed learning from examples, or data-driven information processing. An important issue regarding such modeling is the active selection of data by the modeling process, or exploration. If exploration depends on the current state of the model it is termed reflective. In this paper we consider the issue of exploration in theory, and in practice in the form of a simple example, which enables us to identify general properties of the exploration types, and to comment about when exploration would be profitable.
引用
收藏
页码:193 / 211
页数:19
相关论文
共 18 条
  • [1] BESSIERE P, 1993, IEEE IROS 93 C INT R
  • [2] BEYER U, IN PRESS INT J PATTE
  • [3] BEYER U, 1993, 732 GES MATH DAT
  • [4] COHN D, 1990, ADV NEURAL INFORMATI, V2
  • [5] Fedorov V., 1972, Theory of optimal experiments
  • [6] GABORA LM, 1990, ANIMALS ANIMALS, P475
  • [7] NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA
    GEMAN, S
    BIENENSTOCK, E
    DOURSAT, R
    [J]. NEURAL COMPUTATION, 1992, 4 (01) : 1 - 58
  • [8] MOZER MC, 1989, CUCS45189 U COL DEP
  • [9] OMOHUNDRO S, 1989, TR89041
  • [10] PAASS G, 1994, REFLECTIVE QUERY LEA