Generating Shorter Bases for Hard Random Lattices

被引:263
作者
Alwen, Joel [2 ]
Peikert, Chris [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] NYU, New York, NY USA
基金
美国国家科学基金会;
关键词
Lattices; Average-case hardness; Cryptography; Hermite normal form;
D O I
10.1007/s00224-010-9278-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit the problem of generating a 'hard' random lattice together with a basis of relatively short vectors. This problem has gained in importance lately due to new cryptographic schemes that use such a procedure to generate public/secret key pairs. In these applications, a shorter basis corresponds to milder underlying complexity assumptions and smaller key sizes. The contributions of this work are twofold. First, we simplify and modularize an approach originally due to Ajtai (ICALP 1999). Second, we improve the construction and its analysis in several ways, most notably by making the output basis asymptotically as short as possible.
引用
收藏
页码:535 / 553
页数:19
相关论文
共 21 条
  • [1] AJTAI M., 2004, QUADERNI MATEMATICA, V13, P1
  • [2] [Anonymous], ELECT C COMPUT COMPL
  • [3] [Anonymous], 1999, INT C AUTOMATA LANGU
  • [4] [Anonymous], 2009, Post quantum cryptography
  • [5] Cash D, 2010, LECT NOTES COMPUT SC, V6110, P523
  • [6] Gentry C, 2008, ACM S THEORY COMPUT, P197
  • [7] Gentry C, 2010, LECT NOTES COMPUT SC, V6110, P506
  • [8] Goldreich O, 1997, LECT NOTES COMPUT SC, V1294, P112
  • [9] A pseudorandom generator from any one-way function
    Hästad, J
    Impagliazzo, R
    Levin, LA
    Luby, M
    [J]. SIAM JOURNAL ON COMPUTING, 1999, 28 (04) : 1364 - 1396
  • [10] LATTICE POINTS IN HIGH-DIMENSIONAL SPHERES
    MAZO, JE
    ODLYZKO, AM
    [J]. MONATSHEFTE FUR MATHEMATIK, 1990, 110 (01): : 47 - 61