Adaptive Nonlocal Random Walks for Image Superpixel Segmentation

被引:24
作者
Wang, Hui [1 ]
Shen, Jianbing [1 ]
Yin, Junbo [1 ]
Dong, Xingping [1 ]
Sun, Hanqiu [2 ]
Shao, Ling [3 ]
机构
[1] Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Sch Comp Sci, Beijing 100081, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[3] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
基金
北京市自然科学基金;
关键词
Image segmentation; Image color analysis; Shape; Merging; Clustering algorithms; Entropy; Lattices; Adaptive nonlocal random walk; gradient-based seeds; superpixel; TRACKING;
D O I
10.1109/TCSVT.2019.2896438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel superpixel segmentation method using an adaptive nonlocal random walk (ANRW) algorithm. There are three main steps in our image superpixel segmentation algorithm. Our method is based on the random walk model, in which the seed points are produced to generate the initial superpixels by a gradient-based method in the first step. In the second step, the ANRW is proposed to get the initial superpixels by adjusting the NRW to obtain a better image and superpixel segmentation. In the last step, these small superpixels are merged to get the final regular and compact superpixels. The experimental results demonstrate that our method achieves a better superpixel performance than the state-of-the-art methods. Our source code will be available at: http://github.com/shenjianbing/ANRW.
引用
收藏
页码:822 / 834
页数:13
相关论文
共 43 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Aldous D., Reversible markov chains and random walks on graphs
[3]  
[Anonymous], 2010, Random Walk: A Modern Introduction
[4]  
[Anonymous], 2010, PROC ACM KDD
[5]  
[Anonymous], VLFEAT OPEN PORTABLE
[6]   KNN Matting [J].
Chen, Qifeng ;
Li, Dingzeyu ;
Tang, Chi-Keung .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (09) :2175-2188
[7]   Occlusion-Aware Real-Time Object Tracking [J].
Dong, Xingping ;
Shen, Jianbing ;
Yu, Dajiang ;
Wang, Wenguan ;
Liu, Jianhong ;
Huang, Hua .
IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (04) :763-771
[8]   Sub-Markov Random Walk for Image Segmentation [J].
Dong, Xingping ;
Shen, Jianbing ;
Shao, Ling ;
Van Gool, Luc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) :516-527
[9]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[10]  
Freifeld O, 2015, IEEE IMAGE PROC, P2184, DOI 10.1109/ICIP.2015.7351188