Vertical migrations of fish schools determine overlap with a mobile tidal stream marine renewable energy device

被引:14
|
作者
Whitton, Timothy A. [1 ]
Jackson, Suzanna E. [2 ]
Hiddink, Jan G. [2 ]
Scoulding, Ben [3 ]
Bowers, David [2 ]
Powell, Ben [2 ]
D'Urban Jackson, Tim [1 ]
Gimenez, Luis [2 ,4 ]
Davies, Alan G. [1 ]
机构
[1] Bangor Univ, Ctr Appl Marine Sci, Menai Bridge, Gwynedd, Wales
[2] Bangor Univ, Sch Ocean Sci, Menai Bridge, Gwynedd, Wales
[3] CSIRO Oceans & Atmosphere, Castray Esplanade Battery Point, Hobart, Tas, Australia
[4] Alfred Wegener Inst, Helmholz Ctr Polar & Marine Res, Biol Anstalt Helgoland, Helgoland, Germany
关键词
diel vertical migration; fish schools; fisheries acoustics; marine renewable energy; SPM; sprat; Sprattus sprattus; tidal kite; URIA-AALGE CHICKS; NORTHERN GANNETS; DIVING BEHAVIOR; SPRAT SPRATTUS; SULA-BASSANA; TURBIDITY; ZOOPLANKTON; CONSUMPTION; PATTERNS; INSIGHTS;
D O I
10.1111/1365-2664.13582
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Large increases in the generation of electricity using marine renewable energy (MRE) are planned, and assessment of the environmental impacts of novel MRE devices, such as kites, are urgently needed. A first step in this assessment is to quantify overlap in space and time between MRE devices and prey species of top predators such as small pelagic fish. Here, we quantify how the distribution of fish schools overlaps with the operational depth (20-60 m) and tidal current speeds (>= 1.2-2.4 m/s) used by tidal kites, and the physical processes driving overlap. Fish schools undertake diel vertical migrations driven by the depth of light penetration into the water column, controlled by the supply of solar radiation and water column light absorption and scattering, which in turn depends on the cross-sectional area of suspended particulate matter (SPM). Fish schools were found shallower in the morning and evening and deeper in the middle of the day when solar radiation is greatest, with the deepest depths reached during predictable bimonthly periods of lower current speeds and lower cross-sectional area of SPM. Potential kite operations overlap with fish schools for a mean of 5% of the time that schools are present (maximum for a day is 36%). This represents a mean of 6% of the potential kite operating time (maximum for a day is 44%). These were both highest during a new moon spring tide and transitions between neap and spring tides. Synthesis and applications. Overlap of fish school depth distribution with tidal kite operation is reasonably predictable, and so the timing of operations could be adapted to avoid potential negative interactions. If all interaction between fish schools was to be avoided, the loss of operational time for tidal kites would be 6%. This information could also be used in planning the operating depths of marine renewable energy (MRE) devices to avoid or minimize overlap with fish schools and their predators by developers, and for environmental licencing and management authorities to gauge potential ecological impacts of different MRE device designs and operating characteristics.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 6 条
  • [1] Modeling and SIL Simulation of a Tidal Stream Device for Marine Energy Conversion
    Ghefiri, Khaoula
    Bouallegue, Soufiene
    Haggege, Joseph
    2015 6TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2015,
  • [2] Assessing the effects of tidal stream marine renewable energy on seabirds: A conceptual framework
    Isaksson, Natalie
    Masden, Elizabeth A.
    Williamson, Benjamin J.
    Costagliola-Ray, Melissa M.
    Slingsby, James
    Houghton, Jonathan D. R.
    Wilson, Jared
    MARINE POLLUTION BULLETIN, 2020, 157
  • [3] Fish distributions in a tidal channel indicate the behavioural impact of a marine renewable energy installation
    Fraser, Shaun
    Williamson, Benjamin J.
    Nikora, Vladimir
    Scott, Beth E.
    ENERGY REPORTS, 2018, 4 : 65 - 69
  • [4] Tidal stream use by black guillemots Cepphus grylle in relation to a marine renewable energy development
    Johnston, Daniel T.
    Furness, Robert W.
    Robbins, Alexandra M. C.
    Tyler, Glen A.
    McIlvenny, Jason
    Masden, Elizabeth A.
    MARINE ECOLOGY PROGRESS SERIES, 2021, 669 : 201 - 212
  • [5] Modeling the Probability of Overlap Between Marine Fish Distributions and Marine Renewable Energy Infrastructure Using Acoustic Telemetry Data
    Bangley, Charles W.
    Hasselman, Daniel J.
    Flemming, Joanna Mills
    Whoriskey, Fredrick G.
    Culina, Joel
    Enders, Lilli
    Bradford, Rod G.
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [6] Developing methodologies for large scale wave and tidal stream marine renewable energy extraction and its environmental impact: An overview of the TeraWatt project
    Side, J.
    Gallego, A.
    James, M.
    Davies, I.
    Heath, M.
    Karunarathna, H.
    Venugopal, V.
    Vogler, A.
    Burrows, M.
    OCEAN & COASTAL MANAGEMENT, 2017, 147 : 1 - 5