Combinatorial Antimicrobial Susceptibility Testing Enabled by Non-Contact Printing

被引:9
作者
Opalski, Adam S. [1 ]
Ruszczak, Artur [1 ]
Promovych, Yurii [1 ]
Horka, Michal [1 ]
Derzsi, Ladislav [1 ]
Garstecki, Piotr [1 ]
机构
[1] Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland
关键词
antibiotic susceptibility test; non-contact printing; drug-drug interactions; antimicrobial resistance; URINARY-TRACT-INFECTIONS; ANTIBIOTIC SUSCEPTIBILITY; INHIBITORY CONCENTRATION; DISCOVERY; TOXICITY; DILUTION; AGAR;
D O I
10.3390/mi11020142
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate the utility of non-contact printing to fabricate the mAST-an easy-to-operate, microwell-based microfluidic device for combinatorial antibiotic susceptibility testing (AST) in a point-of-care format. The wells are prefilled with antibiotics in any desired concentration and combination by non-contact printing (spotting). For the execution of the AST, the only requirements are the mAST device, the sample, and the incubation chamber. Bacteria proliferation can be continuously monitored by using an absorbance reader. We investigate the profile of resistance of two reference Escherichia coli strains, report the minimum inhibitory concentration (MIC) for single antibiotics, and assess drug-drug interactions in cocktails by using the Bliss independence model.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Rapid Bead-Based Antimicrobial Susceptibility Testing by Optical Diffusometry
    Chung, Chih-Yao
    Wang, Jhih-Cheng
    Chuang, Han-Sheng
    PLOS ONE, 2016, 11 (02):
  • [32] Metagenomic Antimicrobial Susceptibility Testing from Simulated Native Patient Samples
    Lueftinger, Lukas
    Majek, Peter
    Rattei, Thomas
    Beisken, Stephan
    ANTIBIOTICS-BASEL, 2023, 12 (02):
  • [33] Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii
    Dermoumi, HL
    Ansorg, RAM
    CHEMOTHERAPY, 2001, 47 (03) : 177 - 183
  • [34] Formation and Parallel Manipulation of Gradient Droplets on a Self-Partitioning SlipChip for Phenotypic Antimicrobial Susceptibility Testing
    Liu, Xu
    Li, Xiang
    Wu, Nannan
    Luo, Yang
    Zhang, Jiajie
    Yu, Ziqing
    Shen, Feng
    ACS SENSORS, 2022, 7 (07): : 1977 - 1984
  • [35] Combining deep learning and droplet microfluidics for rapid and label-free antimicrobial susceptibility testing of colistin
    Riti, Justine
    Sutra, Guillaume
    Naas, Thierry
    Volland, Herve
    Simon, Stephanie
    Perez-Toralla, Karla
    BIOSENSORS & BIOELECTRONICS, 2024, 257
  • [36] Antimicrobial susceptibility testing by measuring bacterial oxygen consumption on an integrated platform
    Liu, Yang
    Lehnert, Thomas
    Mayr, Torsten
    Gijs, Martin A. M.
    LAB ON A CHIP, 2021, 21 (18) : 3520 - 3531
  • [37] A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method
    Lee, Wen-Bin
    Fu, Chien-Yu
    Chang, Wen-Hsin
    You, Huey-Ling
    Wang, Chih-Hung
    Lee, Mel S.
    Lee, Gwo-Bin
    BIOSENSORS & BIOELECTRONICS, 2017, 87 : 669 - 678
  • [38] Importance of antimicrobial susceptibility testing for the management of eradication in Helicobacter pylori infection
    Arslan, Nazli
    Yilmaz, Ozlem
    Demiray-Gurbuz, Ebru
    WORLD JOURNAL OF GASTROENTEROLOGY, 2017, 23 (16) : 2854 - 2869
  • [39] Non-contact determination of the viscoelastic properties of agar culture media by Brillouin spectroscopy
    Esteves, B.
    Rocha, A.
    Silva, M. F.
    Correia, J. H.
    Rodrigues, J. A.
    MATERIALIA, 2023, 30
  • [40] Assessment of the usefulness of performing bacterial identification and antimicrobial susceptibility testing 24 h a day in a clinical microbiology laboratory
    Eveillard, M.
    Lemarie, C.
    Cottin, J.
    Hitoto, H.
    Mahaza, C.
    Kempf, M.
    Joly-Guillou, M. -L.
    CLINICAL MICROBIOLOGY AND INFECTION, 2010, 16 (08) : 1084 - 1089