Critical exponents of domain walls in the two-dimensional Potts model

被引:25
作者
Dubail, Jerome [1 ,2 ]
Jacobsen, Jesper Lykke [2 ,3 ]
Saleur, Hubert [1 ,4 ]
机构
[1] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[2] Ecole Normale Super, LPTENS, F-75231 Paris, France
[3] Univ Paris 06, F-75252 Paris, France
[4] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
关键词
CONFORMAL FIELD-THEORY; FRACTAL DIMENSION; ISING CLUSTERS; LOOP MODELS;
D O I
10.1088/1751-8113/43/48/482002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h(l1)-(l2,2l1), valid for 0 <= Q <= 4, that describe the insertion of l(1) thin and l(2) thick domain walls.
引用
收藏
页数:8
相关论文
共 24 条
[1]   2D growth processes: SLE and Loewner chains [J].
Bauer, Michel ;
Bernard, Denis .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 432 (3-4) :115-221
[2]   CRITICAL-BEHAVIOR OF THE TWO-DIMENSIONAL POTTS-MODEL WITH A CONTINUOUS NUMBER OF STATES - A FINITE SIZE SCALING ANALYSIS [J].
BLOTE, HWJ ;
NIGHTINGALE, MP .
PHYSICA A, 1982, 112 (03) :405-465
[3]   INTEGRABLE FIELD-THEORY OF THE Q-STATE POTTS-MODEL WITH 0-LESS-THAN-Q-LESS-THAN-4 [J].
CHIM, L ;
ZAMOLODCHIKOV, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (21) :5317-5335
[4]   CLUSTERS AND DROPLETS IN THE Q-STATE POTTS-MODEL [J].
CONIGLIO, A ;
PERUGGI, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (06) :1873-1883
[5]   Conformally invariant fractals and potential theory [J].
Duplantier, B .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1363-1367
[6]   EXACT FRACTAL DIMENSION OF 2D ISING CLUSTERS [J].
DUPLANTIER, B ;
SALEUR, H .
PHYSICAL REVIEW LETTERS, 1989, 63 (22) :2536-2536
[7]   QUANTUM GROUP SYMMETRY FOR THE PHI-12-PERTURBED AND PHI-21-PERTURBED MINIMAL MODELS OF CONFORMAL FIELD-THEORY [J].
EFTHIMIOU, CJ .
NUCLEAR PHYSICS B, 1993, 398 (03) :697-740
[8]   Exact S-matrices for supersymmetric sigma models and the Potts model [J].
Fendley, P ;
Read, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (50) :10675-10704
[9]  
FENDLEY P, 2008, PHYS, V323, P3113
[10]  
FENDLEY P, 1993, P TRIEST SUMM SCH HI