Embedding metric spaces into normed spaces and estimates of metric capacity

被引:2
作者
Averkov, Gennadiy [1 ]
Duevelmeyer, Nico [1 ]
机构
[1] Univ Technol, Fac Math, D-09107 Chemnitz, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 152卷 / 03期
关键词
normed space; banach space; metric space; hexagonal prism; two-distance set; parallelotope; maximum norm; l(infinity)-space; rectilinear plane; isometric embedding;
D O I
10.1007/s00605-007-0472-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-d be an arbitrary real normed space of finite dimension d >= 2. We define the metric capacity of M-d as the maximal m is an element of N such that every m-point metric space is isometric to some subset of M-d (with metric induced by M-d). We obtain that the metric capacity of M-d lies in the range from 3 to [3/2 d]+1, where the lower bound is sharp for all d; and the upper bound is shown to be sharp for d is an element of {2,3}. Thus, the unknown sharp upper bound is asymptotically linear, since it lies in the range from d+2 to [3/2 d]+ 1.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 22 条
[1]   On planar convex bodies of given Minkowskian thickness and least possible area [J].
Averkov, G .
ARCHIV DER MATHEMATIK, 2005, 84 (02) :183-192
[2]  
AVERKOV G, 2007, C MATH, V107, P273
[3]   Embedding metric spaces in the rectilinear plane: A six-point criterion [J].
Bandelt, HJ ;
Chepoi, V .
DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) :107-117
[4]  
Blumenthal LM., 1970, THEORY APPL DISTANCE
[5]  
DUVELMEYER N, 2006, THESIS CHEMNITZ U TE
[6]  
Indyk P., 2004, HDB DISCRETE COMPUTA, P177, DOI DOI 10.1201/9781420035315.CH8
[7]   Equilateral dimension of the rectilinear space [J].
Koolen, J ;
Laurent, M ;
Schrijver, A .
DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) :149-164
[8]  
Linial Nathan., 2002, Proceedings of the International Congress of Mathematicians, VIII, P573
[9]   The geometry of Minkowski spaces - A survey. Part II [J].
Martini, H ;
Swanepoel, KJ .
EXPOSITIONES MATHEMATICAE, 2004, 22 (02) :93-144
[10]  
Martini H., 2001, Expo. Math., V19, P97, DOI [DOI 10.1016/S0723-0869(01)80025-6, 10.1016/S0723-0869(01)80025-6]