Eventually DSDD Matrices and Eigenvalue Localization

被引:3
作者
Sang, Caili [1 ,2 ]
Zhao, Jianxing [1 ]
机构
[1] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 10期
基金
中国国家自然科学基金;
关键词
matrices; strictly diagonally dominant; eigenvalue localization; determinant; infinity norm; SDD MATRICES;
D O I
10.3390/sym10100448
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Firstly, the relationships among strictly diagonally dominant (SDD) matrices, doubly strictly diagonally dominant (DSDD) matrices, eventually SDD matrices and eventually DSDD matrices are considered. Secondly, by excluding some proper subsets of an existing eigenvalue inclusion set for matrices, which do not contain any eigenvalues of matrices, a tighter eigenvalue inclusion set of matrices is derived. As its application, a sufficient condition of determining non-singularity of matrices is obtained. Finally, the infinity norm estimation of the inverse of eventually DSDD matrices is derived.
引用
收藏
页数:10
相关论文
共 13 条
[1]   Google PageRanking problem: The model and the analysis [J].
Cicone, Antonio ;
Serra-Capizzano, Stefano .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (11) :3140-3169
[2]   Eventually SDD matrices and eigenvalue localization [J].
Cvetkovic, Lj. ;
Eric, M. ;
Pena, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 :535-540
[3]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[4]   Error bounds for linear complementarity problems of S-Nekrasov matrices and B-S-Nekrasov matrices [J].
Gao, Lei ;
Wang, Yaqiang ;
Li, Chaoqian ;
Li, Yaotang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 :147-159
[5]   Pseudospectra localizations and their applications [J].
Kostic, V. R. ;
Cvetkovic, Lj. ;
Cvetkovic, D. Lj. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (02) :356-372
[6]   An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors [J].
Li, Chaoqian ;
Li, Yaotang .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04) :587-601
[7]   Improvements on the infinity norm bound for the inverse of Nekrasov matrices [J].
Li, Chaoqian ;
Pei, Hui ;
Gao, Aning ;
Li, Yaotang .
NUMERICAL ALGORITHMS, 2016, 71 (03) :613-630
[8]  
Li S.H., 2017, ARXIV170501758V2
[9]  
Liu Q., 2016, EVENTUALLY D SDD EVE
[10]   A note on eventually SDD matrices and eigenvalue localization [J].
Liu, Qiong ;
Li, Zhengbo ;
Li, Chaoqian .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 :19-21