A deep learning-based multi-model ensemble method for eye state recognition from EEG

被引:5
作者
Islalm, Md Shafiqul [1 ]
Rahman, Md Moklesur [1 ]
Rahman, Md Hafizur [2 ]
Hoque, Md Robiul [3 ]
Roonizi, Arman Kheirati [4 ]
Aktaruzzaman, Md [3 ]
机构
[1] Peoples Univ Bangladesh, Dept Comp Sci & Engg, Dhaka, Bangladesh
[2] Islamic Univ, Dept Elect & Elect Engg, Kushtia, Bangladesh
[3] Islamic Univ, Dept Comp Sci & Engg, Kushtia, Bangladesh
[4] Fasa Univ, Dept Comp Sci, Fasa, Iran
来源
2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC) | 2021年
关键词
Eye state recognition; EEG; Convolutional neural network; Ensemble; Deep learning; CLASSIFICATION; ALGORITHM;
D O I
10.1109/CCWC51732.2021.9376084
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Eye state recognition plays an important role in biomedical informatics e.g., smart home devices controlling, drowsy driving detection, etc. The change in cognitive states is reflected by the changing in electroencephalogram (EEG) signals. There are some works for eye state recognition using traditional shallow neural networks and manually extracted features. The useful features extraction from EEG and the selection of appropriate classifiers are challenging tasks due to the variable nature of EEG signals. The deep learning algorithms automatically extracts features and often reported better performance than traditional classifiers in some recognition and recognition tasks. In this paper, we have proposed three architectures of a deep learning model using ensemble technique: convolution neural network, gated recurrent unit, and long short term memory for eye state recognition (open or close) from EEG directly. The study has been performed on a freely available public EEG eye state dataset of 14980 samples. The individual performance of each classifier has been observed, and also performance of recognition performance of the ensemble networks has also been compared with the existing prominent methods. The average accuracy 99.86% was obtained by the proposed method, and it is the highest performance ever reported in the literature.
引用
收藏
页码:819 / 824
页数:6
相关论文
共 50 条
  • [21] Deep learning-based multi-model approach on electron microscopy image of renal biopsy classification
    Zhang, Jingyuan
    Zhang, Aihua
    BMC NEPHROLOGY, 2023, 24 (01)
  • [22] Deep learning-based multi-model approach on electron microscopy image of renal biopsy classification
    Jingyuan Zhang
    Aihua Zhang
    BMC Nephrology, 24
  • [23] Deep Learning-Based Phase Unwrapping Method
    Li, Dongxu
    Xie, Xianming
    IEEE ACCESS, 2023, 11 : 85836 - 85851
  • [24] COVID-19 DETECTION USING MULTIMODAL AND MULTI-MODEL ENSEMBLE BASED DEEP LEARNING TECHNIQUE
    Fahmy, Ghazal A.
    Abd-Elrahman, Emad
    Zorkany, M.
    PROCEEDINGS OF 2022 39TH NATIONAL RADIO SCIENCE CONFERENCE (NRSC'2022), 2022, : 241 - 253
  • [25] Ensemble learning methods with single and multi-model deep learning approaches for cephalometric landmark annotation
    Rashmi, S.
    Srinath, S.
    Rakshitha, R.
    Poornima, B.V.
    Discover Artificial Intelligence, 2024, 4 (01):
  • [26] Automated Brain Tumor Identification in Biomedical Radiology Images: A Multi-Model Ensemble Deep Learning Approach
    Natha, Sarfaraz
    Laila, Umme
    Gashim, Ibrahim Ahmed
    Mahboob, Khalid
    Saeed, Muhammad Noman
    Noaman, Khaled Mohammed
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [27] An ensemble deep learning approach to evaluate haptic delay from a single trial EEG data
    Alsuradi, Haneen
    Eid, Mohamad
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [28] Deep learning-based welding image recognition: A comprehensive review
    Liu, Tianyuan
    Zheng, Pai
    Bao, Jinsong
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 68 : 601 - 625
  • [29] Deep Learning-based Weather Image Recognition
    Kang, Li-Wei
    Chou, Ke-Lin
    Fu, Ru-Hong
    2018 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2018), 2018, : 384 - 387
  • [30] Deep learning-based microexpression recognition: a survey
    Gong, Wenjuan
    An, Zhihong
    Elfiky, Noha M.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (12) : 9537 - 9560