A facile method to improve the stability and efficiency of CsPbI2Br perovskite solar cells prepared at low temperature

被引:9
作者
Liu, Hongsha [1 ,2 ]
Xiao, Xiudi [2 ]
Bi, Zhuoneng [2 ]
Wang, Jixi [2 ]
Liu, Yangbiao [2 ]
Zhu, Yanqing [2 ]
Xu, Xueqing [2 ]
Xu, Gang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
基金
国家重点研发计划;
关键词
CsPbI2Br; Levulinic acid; Spin-coating three minutes; Room temperature; 80 degrees C; HALIDE PEROVSKITES; ALPHA-CSPBI3; INTERFACE; GAP;
D O I
10.1016/j.solener.2019.11.047
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CsPbI2Br has become the focus of researchers in recent years due to its excellent thermal stability compared to the organic-inorganic hybrid perovskites. However, it requires high temperature to form cubic phase, and it is difficult to maintain the cubic phase in the high humidity ambient. By adding 30 mu L levulinic acid (LA) to the CsPbI2Br precursor solution, cubic phase CsPbI2Br can be obtained by spin-coating three minutes (TMS) at room temperature (RT) instead of high temperature. Based on the TMS, highly quality cubic phase CsPbI2Br film can be obtained at 80 degrees C annealing temperature, the stability of cubic phase CsPbI2Br can be significantly improved by adding LA in the CsPbI2Br precursor solution. Based on this, CsPbI2Br cells without LA achieve 11.68% power conversion efficiency (PCE) at low temperature of 80 degrees C and the corresponding stabilized power output is 10.31%. Furthermore, 10 mu L LA addition CsPbI2Br cells keep its 50% PCE after 10 days under 35%RH and RT. This has found a new way to improve the stability of inorganic perovskite solar cells, and increasing its potential in flexible solar cells.
引用
收藏
页码:544 / 551
页数:8
相关论文
共 50 条
  • [1] The progress and efficiency of CsPbI2Br perovskite solar cells
    Liu, Xin
    Li, Jie
    Cui, Xumei
    Wang, Xiao
    Yang, Dingyu
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (02) : 426 - 455
  • [2] Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells
    Ma, Jing
    Su, Jie
    Lin, Zhenhua
    Zhou, Long
    He, Jian
    Zhang, Jincheng
    Liu, Shengzhong
    Chang, Jingjing
    Hao, Yue
    NANO ENERGY, 2020, 67
  • [3] Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells
    Grischek, Max
    Caprioglio, Pietro
    Zhang, Jiahuan
    Pena-Camargo, Francisco
    Sveinbjornsson, Kari
    Zu, Fengshuo
    Menzel, Dorothee
    Warby, Jonathan H.
    Li, Jinzhao
    Koch, Norbert
    Unger, Eva
    Korte, Lars
    Neher, Dieter
    Stolterfoht, Martin
    Albrecht, Steve
    SOLAR RRL, 2022, 6 (11)
  • [4] Inverted CsPbI2Br perovskite solar cells with enhanced efficiency and stability in ambient atmosphere via formamidinium incorporation
    Chen, Mengmeng
    Sahamir, Shahrir R.
    Kapil, Gaurav
    Baranwal, Ajay K.
    Kamarudin, Muhammad Akmal
    Zhang, Yaohong
    Nishimura, Kohei
    Ding, Chao
    Liu, Dong
    Hirotani, Daisuke
    Shen, Qing
    Hayase, Shuzi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 218
  • [5] Low non-radiative recombination loss in CsPbI2Br perovskite solar cells
    Xu, Wenzhan
    Gao, Yu
    Kang, Feiyu
    Wei, Guodan
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 1893 - 1896
  • [6] Boosting the Stability of Fully-Inorganic Perovskite Solar Cells through Samarium Doped CsPbI2Br Perovskite
    Patil, Jyoti, V
    Mali, Sawanta S.
    Hong, Chang Kook
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (43) : 16364 - 16371
  • [7] Interface optimization of CsPbI2Br based perovskite solar cells by device simulation
    Dong, Yujing
    Duan, Junjie
    Luo, Dengshuai
    Liu, Jiajun
    Wang, Xiaohui
    Liu, Xu
    Huang, Zhihao
    Li, Xuxiang
    Gao, Yanli
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [8] Surface modification of CsPbI2Br for improved performance of inorganic perovskite solar cells
    Fatima, Kalsoom
    Haider, Muhammad Irfan
    Bashir, Amna
    Qamar, Samina
    Qureshi, Akbar Ali
    Akhter, Zareen
    Sultan, Muhammad
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 142
  • [9] Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%
    Yang, Xia
    Yang, Hanjun
    Hu, Xiaotian
    Li, Wenting
    Fang, Zhimin
    Zhang, Kaifeng
    Huang, Rui
    Li, Jinming
    Yang, Zhou
    Song, Yanlin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (10) : 5308 - 5314
  • [10] PMMA passivated CsPbI2Br perovskite film for highly efficient and stable solar cells
    Yuan, Beilei
    Li, Chen
    Yi, Wencai
    Juan, Fangying
    Yu, Huanqin
    Xu, Fan
    Li, Cuncheng
    Cao, Bingqiang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 153