Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks

被引:14
作者
Zhang, Zhijin [1 ]
Li, He [1 ]
Chen, Lei [2 ]
Han, Ping [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110819, Peoples R China
[2] Midea Grp, Res Inst, Foshan 528311, Peoples R China
基金
中国国家自然科学基金;
关键词
FEATURE-EXTRACTION; BELIEF NETWORK; MACHINERY; SPECTRUM; MODEL;
D O I
10.1155/2021/9942249
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To improve feature learning ability and accurately diagnose the faults of rolling bearings under a strong background noise environment, we present a new shrinkage function named leaky thresholding to replace the soft thresholding in the deep residual shrinkage networks (DRSNs). In this work, we discover that such improved deep residual shrinkage networks (IDRSNs) can be realized by using a group searching method to optimize the slope value of leaky thresholding, and leaky thresholding in the IDRSNs can more effectively eliminate the noise of signal features. We highlight that our techniques can significantly improve the performance on various fundamental tasks. Experimental results show that IDRSNs achieve better fault diagnosis results on noised vibration signals compared with DRSNs. Moreover, we also provide a normalized processing to further improve the fault diagnosing accuracy of rolling bearing under a strong background noise environment.
引用
收藏
页数:11
相关论文
共 35 条
[1]   Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features [J].
Ahmed, H. O. A. ;
Wong, M. L. D. ;
Nandi, A. K. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 99 :459-477
[2]   Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks [J].
Appana, Dileep K. ;
Prosvirin, Alexander ;
Kim, Jong-Myon .
SOFT COMPUTING, 2018, 22 (20) :6719-6729
[3]   Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach [J].
Asr, Mahsa Yazdanian ;
Ettefagh, Mir Mohammad ;
Hassannejad, Reza ;
Razavi, Seyed Naser .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 :56-70
[4]   ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis [J].
Chen, Yuanhang ;
Peng, Gaoliang ;
Xie, Chaohao ;
Zhang, Wei ;
Li, Chuanhao ;
Liu, Shaohui .
NEUROCOMPUTING, 2018, 294 :61-71
[5]   A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks [J].
Chen, Zhuyun ;
Mauricio, Alexandre ;
Li, Weihua ;
Gryllias, Konstantinos .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 140
[6]   A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier [J].
Eren, Levent ;
Ince, Turker ;
Kiranyaz, Serkan .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (02) :179-189
[7]   Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis [J].
Gao, Zehai ;
Ma, Cunbao ;
Song, Dong ;
Liu, Yang .
NEUROCOMPUTING, 2017, 238 :13-23
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hou M.X., 2020, IEEE T INSTRUM MEAS, V70
[10]   Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization [J].
Jia, Feng ;
Lei, Yaguo ;
Lu, Na ;
Xing, Saibo .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 110 :349-367