Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?

被引:10
作者
Hung, Jui-Hsiang [1 ]
Simmons, David S. [2 ]
机构
[1] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
[2] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; TEMPERATURE-DEPENDENCE; FORCE-FIELD; SIMULATIONS; FRAGILITY; INSIGHTS;
D O I
10.1021/acs.jpcb.9b09468
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Adam-Gibbs theory of glass formation posits that the growth in the activation barrier of fragile liquids on cooling emerges from a loss of configurational entropy and concomitant growth in "cooperatively rearranging regions" (CRRs). A body of literature over 2 decades has suggested that "string-like" cooperatively rearranging clusters observed in molecular simulations may be these CRRs-a scenario that would have profound implications for the understanding of the glass transition. The central element of this postulate is the report of an apparent zero-parameter relationship between the mass of string-like CRRs and the relaxation time. Here, we show, based on molecular dynamics simulations of multiple glass-forming liquids, that this finding is the result of an implicit adjustable parameter-a "replacement distance". This parameter is equivalent to an adjustable exponent within a generalized Adam-Gibbs relation, such that it tunes the entire functional form of the relation. Moreover, we are unable to find any objective criterion, based on the radial distribution function or the cluster fractal dimension, for selecting this replacement distance across multiple systems. We conclude that the present data do not establish that string-like cooperative rearrangements, as presently defined, are predictive of segmental relaxation via an Adam-Gibbs-like physical model.
引用
收藏
页码:266 / 276
页数:11
相关论文
共 41 条
[1]   ON TEMPERATURE DEPENDENCE OF COOPERATIVE RELAXATION PROPERTIES IN GLASS-FORMING LIQUIDS [J].
ADAM, G ;
GIBBS, JH .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (01) :139-&
[2]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[3]  
[Anonymous], ARXIV190508179CONDMA
[4]   Computer simulations of supercooled polymer melts in the bulk and in-confined geometry [J].
Baschnagel, J ;
Varnik, F .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (32) :R851-R953
[5]   Considerations for choosing and using force fields and interatomic potentials in materials science and engineering [J].
Becker, Chandler A. ;
Tavazza, Francesca ;
Trautt, Zachary T. ;
de Macedo, Robert A. Buarque .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2013, 17 (06) :277-283
[6]   Direct observation of stringlike collective motion in a two-dimensional driven granular fluid [J].
Berardi, Christian R. ;
Barros, Kipton ;
Douglas, Jack F. ;
Losert, Wolfgang .
PHYSICAL REVIEW E, 2010, 81 (04)
[7]   Static point-to-set correlations in glass-forming liquids [J].
Berthier, Ludovic ;
Kob, Walter .
PHYSICAL REVIEW E, 2012, 85 (01)
[8]   String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt [J].
Betancourt, Beatriz A. Pazmino ;
Starr, Francis W. ;
Douglas, Jack F. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (10)
[9]   Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials [J].
Betancourt, Beatriz A. Pazmino ;
Hanakata, Paul Z. ;
Starr, Francis W. ;
Douglas, Jack F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (10) :2966-2971
[10]   String model for the dynamics of glass-forming liquids [J].
Betancourt, Beatriz A. Pazmino ;
Douglas, Jack F. ;
Starr, Francis W. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (20)