Atomistic Modeling of the Electrical Conductivity of Single-Walled Carbon Nanotube Junctions

被引:2
作者
Durrant, Thomas R. [1 ,2 ]
El-Sayed, Al-Moatasem [2 ,3 ]
Gao, David Z. [1 ,2 ,4 ]
Rueckes, Thomas [5 ]
Bersuker, Gennadi [6 ]
Shluger, Alexander L. [1 ,7 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Nanolayers Res Comp Ltd, 1 Granville Court,Granville Rd, London N12 0HL, England
[3] Tech Univ Wien, Inst Microelect, A-1040 Vienna, Austria
[4] NTNU, Dept Phys, NO-7491 Trondheim, Norway
[5] Nantero Inc, 25-B Olympia Ave, Woburn, MA 01801 USA
[6] Aerosp Corp, Los Angeles, CA 90245 USA
[7] UCL, London Ctr Nanotechnol, Gower St, London WC1 6BT, England
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2022年 / 16卷 / 08期
基金
英国工程与自然科学研究理事会;
关键词
amorphous fabrics; carbon nanotubes; electron transport; WORK FUNCTION; TRANSPORT;
D O I
10.1002/pssr.202200118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotubes (CNTs) have many interesting properties that make them a focus of research in a wide range of technological applications. In CNT films, the bottleneck in charge transport is typically attributed to higher resistance at CNT junctions, leading to electrical transport characteristics that are quite different from individual CNTs. Previous simulations confirm this; however, a systematic study of transport across junctions is still lacking in the literature. Herein, density functional tight binding (DFTB) theory combined with the nonequilibrium Green's functions (NEGF) method is used to systematically calculate current across a range of CNT junctions. A random sampling approach is used to sample an extensive library of junction structures. The results demonstrate that the conductivity of CNT contacts depends on the overlap area between nanotubes and exponentially on the distances between the carbon atoms of the interacting CNTs. Two models based solely on the atomic positions of carbon atoms within the nanotubes are developed and evaluated: a simple equation using only the smallest C-C separation and a more sophisticated model using the positions of all C atoms. These junction current models can be used to predict transport in larger-scale simulations where the CNT fabric structure is known.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Long-range correlation energy calculated from coupled atomic response functions [J].
Ambrosetti, Alberto ;
Reilly, Anthony M. ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
[2]   Experimental Measurement of Angular and Overlap Dependence of Conduction between Carbon Nanotubes of Identical Chirality and Diameter [J].
Barnett, Chris J. ;
Evans, Christopher ;
McCormack, James E. ;
Gowenlock, Cathren E. ;
Dunstan, Peter ;
Adams, Wade ;
White, Alvin Orbaek ;
Barron, Andrew R. .
NANO LETTERS, 2019, 19 (08) :4861-4865
[3]   Contact resistance between carbon nanotubes [J].
Buldum, A ;
Lu, JP .
PHYSICAL REVIEW B, 2001, 63 (16)
[4]  
Chai Y., 2010, INT EL DEV M
[5]   Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling [J].
Chen, Xue-Kun ;
Hu, Xiao-Yan ;
Jia, Peng ;
Xie, Zhong-Xiang ;
Liu, Jun .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 206
[6]   ReaxFF Reactive Force Field Study of Polymerization of a Polymer Matrix in a Carbon Nanotube-Composite System [J].
Damirchi, Behzad ;
Radue, Matthew ;
Kanhaiya, Krishan ;
Heinz, Hendrik ;
Odegard, Gregory M. ;
van Duin, Adri C. T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (37) :20488-20497
[7]  
Dresselhaus M.S., 1996, Science of Fullerenes and Carbon Nanotubes
[8]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746
[9]   Transport through crossed nanotubes [J].
Fuhrer, MS ;
Lim, AKL ;
Shih, L ;
Varadarajan, U ;
Zettl, A ;
McEuen, PL .
PHYSICA E, 2000, 6 (1-4) :868-871
[10]   Crossed nanotube junctions [J].
Fuhrer, MS ;
Nygård, J ;
Shih, L ;
Forero, M ;
Yoon, YG ;
Mazzoni, MSC ;
Choi, HJ ;
Ihm, J ;
Louie, SG ;
Zettl, A ;
McEuen, PL .
SCIENCE, 2000, 288 (5465) :494-497