Perturbations in Muntz's theorem

被引:4
作者
Spalsbury, Angela [1 ]
机构
[1] Youngstown State Univ, Dept Math & Stat, Youngstown, OH 44555 USA
关键词
Muntz's theorem; composition operators; cyclic vectors; invariant subspaces;
D O I
10.1016/j.jat.2007.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize parts of the Muntz-Szasz theorem by considering the denseness of sets span {x(lambda 1), x(lambda 2),...}, where the;lambda(1)'s grow polynomially. We develop a new interpolation technique to illustrate more precisely what is missing from the closure of the Muntz sets. This is a robust technique which allows for perturbations. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 68
页数:21
相关论文
共 26 条
[1]  
Aron Richard M., 1999, CONT MATH, V232, P39
[2]   Completeness of integer translates in function spaces on R [J].
Atzmon, A ;
Olevskii, A .
JOURNAL OF APPROXIMATION THEORY, 1996, 87 (03) :291-327
[3]  
Bernal-Gonz?lez L., 1995, COMPLEX VARIABLES TH, V27, P47, DOI DOI 10.1080/17476939508814804
[4]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473
[5]  
Bloom T., 1992, CONT MATH, V137, P85
[6]   MUNTZ SPACES AND REMEZ INEQUALITIES [J].
BORWEIN, P ;
ERDELYI, T .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 32 (01) :38-42
[7]   Generalizations of Muntz's Theorem via a Remez-type inequality for Muntz spaces [J].
Borwein, P ;
Erdelyi, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (02) :327-349
[8]   NOTES ON LACUNARY MUNTZ POLYNOMIALS [J].
BORWEIN, P ;
ERDELYI, T .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 76 (1-2) :183-192
[9]   The full Muntz theorem in C[0,1] and L(1)[0,1] [J].
Borwein, P ;
Erdelyi, T .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :102-110
[10]  
BORWEIN P, 1998, MG TXB PUR APPL MATH, V212, P115